Skip to main content
Log in

Performance of Fluorescent Labels in Sedimentation Bead Arrays—A Comparison Study

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

An extensive study is described to identify the most suitable fluorescent label in magnetic microsphere sedimentation arrays. The investigated fluorescent labels, commonly used in multiplex analysis, include organic dyes, (fluorescein, Alexa488, Cy5) fluorescent proteins (R-Phycoerythrin, Allophycocyanine, PBXL-3) polymer nanoparticles (FluoSpheres, PD-Pt) and semiconductor nanocrystals (Quantum dots). DNA hybridization assays on magnetic microspheres were applied as model systems to reveal label performance. The fluorescent labels were characterized under optimized conditions regarding signal intensity, non-specific binding and photo-stability. The advantages and drawbacks of individual labels are discussed. The limit of detection and dynamic ranges are determined to compare the performance of selected labels. Detection limits of 2 × 10−10 mol/L are found for the determination of oligonucleotides using PBXl-3 as label, which is comparable with typical flow cytometer systems. The results and protocols are highly valuable for any type of bead based assays and can be easily transferred.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Reference

  1. Wilson R, Cossins AR, Spiller DG (2006) Encoded microcarriers for high-throughput multiplexed detection. Angew Chem Int Ed 45(37):6104–6117

    Article  CAS  Google Scholar 

  2. Wentzell PD, Karakach TK (2005) DNA microarrays: is there a role for analytical chemistry? Analyst 130:1331–1336

    Article  PubMed  CAS  Google Scholar 

  3. Nagl S, Schaeferling M, Wolfbeis OS (2005) Fluorescence analysis in microarray technology. Microchim Acta 151:1–21

    Article  CAS  Google Scholar 

  4. Yingyongnarongkul B et al (2003) Parallel and multiplexed bead-based assays and encoding strategies. Comb Chem High Throughput Screen 6:577–587

    PubMed  CAS  Google Scholar 

  5. Moser C, Mayr T, Klimant I (2006) Microsphere sedimentation arrays for multiplexed bioanalytics. Anal Chim Acta 558(1–2):102–109

    Article  CAS  Google Scholar 

  6. Mayr T, Moser C, Klimant I (2007) Luminescence decay time encoding of magnetic micro spheres. Anal Chim Acta 597:137–144

    Article  PubMed  CAS  Google Scholar 

  7. http://www.luminexcorp.com/applications/index.html

  8. Glazer AN (1982) Phycobilisomes: structure and dynamics. Annu Rev Microbiol 36:173–198

    Article  PubMed  CAS  Google Scholar 

  9. Morseman JP et al (2000) Direct fluorescent detection of biotinylated oligonucleotides on glass slides using streptavidin labeled with PBXL-1 or phycoerythrin. Lumin Forum 6:4

    Google Scholar 

  10. Telford WG et al (2001) Cyanobacterial stabilized phycobilisomes as fluorochromes for extracellular antigen detection by flow cytometry. J Immunol Methods 254:13–30

    Article  PubMed  CAS  Google Scholar 

  11. Wang L et al (2005) Fluorescent nanometer microspheres as a reporter for sensitive detection of simulants of biological threats using multiplexed suspension arrays. Bioconjug Chem 16:194–199

    Article  PubMed  CAS  Google Scholar 

  12. Gerion D et al (2003) Room-temperature single-nucleotide polymorphism and multiallele DNA detection using fluorescent nanocrystals and microarrays. Anal Chem 75:4766–4772

    Article  PubMed  CAS  Google Scholar 

  13. Liang RQ et al (2005) An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe. Nucleic Acids Res 33:e17-1–e17/8

    Google Scholar 

  14. Haugland RP (2002) Handbook of fluorescent probes and research products, 9th edn. Molecular Probes, Eugene, OR, USA

    Google Scholar 

  15. Dubertret B et al (2002) In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298:1759–1762

    Article  PubMed  CAS  Google Scholar 

  16. Xu H (2003) Multiplexed SNP genotyping using the Qbead system: a quantum dot-encoded microsphere-based assay. Nucleic Acids Res 31:e43-1–e43/10

    Google Scholar 

  17. Han M (2001) Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol 19:631–635

    Article  PubMed  CAS  Google Scholar 

  18. Jaiswal JK et al (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol 21:47–51

    Article  PubMed  CAS  Google Scholar 

  19. Yang L, Tran D, Wang X (2001) BADGE, beadsArray for the detection of gene expression, a high-throughput diagnostic bioassay. Genome Res 11:1888–1898

    PubMed  CAS  Google Scholar 

  20. Spiro A, Lowe M, Brown D (2000) A bead-based method for multiplexed identification and quantitation of DNA sequences using flow cytometry. Appl Environ Microbiol 66:4258–4265

    Article  PubMed  CAS  Google Scholar 

  21. Spiro A, Lowe M (2002) Quantitation of DNA sequences in environmental PCR products by a multiplexed, bead-based method. Appl Environ Microbiol 68:1010–1013

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Mayr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayr, T., Moser, C. & Klimant, I. Performance of Fluorescent Labels in Sedimentation Bead Arrays—A Comparison Study. J Fluoresc 19, 303–310 (2009). https://doi.org/10.1007/s10895-008-0416-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-008-0416-0

Keywords

Navigation