Skip to main content
Log in

A Spectroscopic Study of the Interaction of the Fluorescent β-Carboline-3-carboxylic Acid N-methylamide with DNA Constituents: Nucleobases, Nucleosides and Nucleotides

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Interaction between β-carboline-3-carboxylic acid N-methylamide, βCMAM, and nucleobases, nucleosides and nucleotides is studied in the ground state with UV-visible, 1H NMR and 31P NMR spectroscopies and in the first excited state, with steady-state and time-resolved fluorescence spectroscopy. Job plots show a predominant 1:1 interaction in both electronic states. Association constants are estimated from changes in the absorption spectra, and show that the strongest interaction is produced with the nucleosides: 2′-deoxyadenosine (dAdo) and thymidine (Thd), and with the mononucleotides: 2′-deoxycytidine 5′- monophosphate (5′-dCMP) and uridine 5′- monophosphate (5′-UMP). These results are corroborated by the upfield shifts of two 1H NMR resonances of the βCMAM indole group. The 31P NMR resonance of nucleotides is shifted downfield, suggesting the presence of electrostatic or hydrogen bond interaction with βCMAM. In the first electronic singlet excited state, static and dynamic quenching of βCMAM emission is achieved upon addition of nucleobases, nucleosides and nucleotides. This has been analysed using Stern–Volmer kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pfau W, Skog K (2004) Exposure to β-carbolines norharman and harman. J Chromatogr B 802(1):115–126

    Article  CAS  Google Scholar 

  2. Bahçeevli AK, Kurucu S, Kolak U, Topçu G, Adou E, Kingston DGI (2005) Alkaloids and aromatics of Cyathobasis fruticulosa (Bunge) Aellen. J Nat Prod 68(6):956–958

    Article  PubMed  CAS  Google Scholar 

  3. Sun B, Morikawa T, Matsuda H, Tewtrakul S, Wu LJ, Harima S, Yoshikawa M (2004) Structures of new β-carboline-type alkaloids with antiallergic effects from Stellaria dichotoma. J Nat Prod 67(9):1464–1469

    Article  PubMed  CAS  Google Scholar 

  4. Carlini EA (2003) Plants and the central nervous system. Pharmacol Biochem Behav 75(3):501–512

    Article  PubMed  CAS  Google Scholar 

  5. Kuo P-C, Shi L-S, Damu AG, Su C-R, Huang C-H, Ke C-H, Wu J-B, Lin A-J, Bastow KF, Lee K-H, Wu T-S (2003) Cytotoxic and antimalarial β-carboline alkaloids form the roots of Eurycoma iongifolia. J Nat Prod 66(10):1324–1327

    Article  PubMed  CAS  Google Scholar 

  6. Herraiz T (2004) Relative exposure to beta-carbolines norharman and harman from foods and tobacco smoke. Food Addit Contam 21(11):1041–1050

    Article  PubMed  CAS  Google Scholar 

  7. Herraiz T, Papavergou E (2004) Identification and occurrence of output this record tryptamine- and tryptophan-derived tetrahydro-beta-carbolines in commercial sausages. J Agric Food Chem 52(9):2652–2658

    Article  PubMed  CAS  Google Scholar 

  8. Totsuka Y, Takamura-Enya T, Nishigaki R, Sugimura T, Wakabayashi K (2004) Mutagens formed from β-carbolines with aromatic amines. J Chromatogr B 802(1):135–141

    Article  CAS  Google Scholar 

  9. Pari K, Sundari CS, Chandani S, Balasubramanian D (2000) β-carbolines that accumulate in human tissues may serve a protective role against oxidative stress. J Biol Chem 275(4):2455–2462

    Article  PubMed  CAS  Google Scholar 

  10. Hudson JB, Towers GH (1991) Therapeutic potential of plant photosenistizers. Pharmac Ther 49(3):81–122

    Google Scholar 

  11. Hashimoto Y, Kawanishi K, Morriyasu M (1988) In: Forensic chemistry of alkaloids: chemistry and pharmacology, vol. 32. Academic Pres, San Diego, pp 40–45

  12. Kikura-Hanajiri R, Hayashi M, Saisho K, Goda Y (2005) Simultaneous determination of nineteen hallucinogenic tryptamines/β-carbolines and phenthylamines using gas chromatography-mass spectrometry and liquid chromatography-electrospray ionisation-mass spectrometry. J Chromatogr B 825(1):29–37

    Article  CAS  Google Scholar 

  13. Cooper EJ, Hudson AL, Parker CA, Morgan NG (2003) Effects of the β-carbolines, harmane and pinoline, on insulin secretion from isolated human islets of Langerhans. Eur J Pharmacol 482(1–3):189–196

    Article  PubMed  CAS  Google Scholar 

  14. Boursereau Y, Coldham I (2004) Synthesis and biological studies of 1-amino- β-carbolines. Bioorg Med Chem Lett 14(23):5841–5844

    Article  PubMed  CAS  Google Scholar 

  15. Laronze M, Boisbrun M, Léonce S, Pfeiffer B, Renard P, Lozach O, Meijer L, Lansiaux A, Bailly C, Sapi J, Laronze J-Y (2005) Synthesis and anticancer activity of new pyrrolocarbazoles and pyrrolo-β-carbolines. Bioorg Med Chem 13(6):2263–2283

    Article  PubMed  CAS  Google Scholar 

  16. Tu LC, Chen C-S, Hsiao I-C, Chern J-W, Lin C-H, Shen Y-C, Yeh SF (2005) The β-Carboline analog mana-hox causes mitotic aberration by interacting with DNA. Chem Biol 12(12):1317–1324

    Article  PubMed  CAS  Google Scholar 

  17. Cao R, Peng W, Chen H, Ma Y, Liu X, Hou X, Guan H, Xu A (2005) DNA binding properties of 9-substituted harmine derivatives. Biochem Biophys Res Commun 338(3):1557–1563

    Article  PubMed  CAS  Google Scholar 

  18. Guan H, Liu X, Peng W, Cao R, Ma Y, Chen H, Xu A (2006) β-Carboline derivatives: Novel photosensitizers that intercalate into DNA to cause direct DNA damage in photodynamic therapy. Biochem Biophys Res Commun 342(3):894–901

    Article  PubMed  CAS  Google Scholar 

  19. Herraiz T, Galisteo J (2003) Tetrahydro-β-carboline alkaloids occur in fruits and fruit juices. Activity as antioxidants and radical scavengers. J Agric Food Chem 51(24):7156–7161

    Article  PubMed  CAS  Google Scholar 

  20. Majer BJ, Kassie F, Sasaki Y, Pfau W, Glatt H, Meinl W, Darroudi F, Knasmüller S (2004) Investigation of the genotoxic effects of 2-amino-9H-pyrido[2,3-b]indole in different organs of rodents and in human derived cells. J Chromatogr B 802(1):167–173

    Article  CAS  Google Scholar 

  21. Nii H (2003) Possibility of the involvement of 9H-pyrido[3,4-b]indole (norharman) in carcinogenesis via inhibition of cytochrome P450-related activities and intercalation to DNA. Mutat Res 541(1–2):123–136

    PubMed  CAS  Google Scholar 

  22. Boeira JM, Viana AF, Picada JN, Henriques JAP (2002) Genotoxic and recombinogenic activities of the two β-carboline alkaloids harman and harmine in Saccharomyces cerevisiae. Mutat Res 500(1–2):39–48

    PubMed  CAS  Google Scholar 

  23. Bringmann G, Münchbach M, Feineis D, Faulhaber K, Ihmels H (2001) Studies on single-strand scissions to cell-free plasmid DNA by the dopaminergic neurotoxin ‘TaClo’ (1-trichloromethyl-1,2,3,4-tetrahydro-β-carboline). Neurosci Lett 304(1):41–44

    Article  PubMed  CAS  Google Scholar 

  24. Wakabayashi K, Totsuka Y, Fukutome K, Oguri A, Ushiyama H, Sugimura T (1997) Human exposure to mutagenic/carcinogenic heterocyclic amines and comutagenic β-carbolines. Mutat Res 376(1–2):253–259

    PubMed  CAS  Google Scholar 

  25. Picada JN, da Silva KVCL, Erdtmann B, Henriques AT, Henriques JAP (1997) Genotoxic effects of structurally related β-carboline alkaloids. Mutat Res 379(2):135–149

    PubMed  CAS  Google Scholar 

  26. Meester C (1995) Genotoxic potential of β-carbolines: a review. Mutat Res 339:139–153

    PubMed  CAS  Google Scholar 

  27. Sasaki YF, Yamada H, Shimoi K, Kinae N, Tomita I, Matsumura H, Ohta T, Shirasu Y (1992) Enhancing effects of heterocyclic amines and β-carbolines on the induction of chromosome aberrations in cultured mammalian cells. Mutat Res 269(1):79–95

    PubMed  CAS  Google Scholar 

  28. Shimoi K, Kawabata H, Tomita I (1992) Enhancing effect of heterocyclic amines and β-carbolines on UV or chemically induced mutagenesis in E. coli. Mutat Res 268(2):287–295

    CAS  Google Scholar 

  29. Xiao S, Lin W, Wang C, Yang M (2001) Synthesis and biological evaluation of DNA targeting flexible side-chain substituted β-carboline derivatives. Bioorg Med Chem Lett 11(4):437–441

    Article  PubMed  CAS  Google Scholar 

  30. Tamura S, Konakahara T, Komatsu H, Ozaki T, Ohta Y, Takeuchi H (1998) Synthesis of β-carboline derivatives and their interaction with duplex-DNA. Heterocycles 48(12):2477–2480

    Article  CAS  Google Scholar 

  31. Feigon J, Denny WA, Leupin W, Kearns DR (1984) Interaction of antitumor drugs with natural DNA: 1H NMR study of binding mode and kinetics. J Med Chem 27(4):450–465

    Article  PubMed  CAS  Google Scholar 

  32. García-Zubiri IX, Burrows HD, Seixas de Melo JS, Pina J, Monteserín M, Tapia MJ (2007) Effects of the interaction between β-carboline-3-carboxylic acid N-methylamide and polynucleotide on singlet oxygen quantum yield and DNA oxidative damage. Photochem Photobiol 83:1455–1464

    Article  PubMed  CAS  Google Scholar 

  33. Balón M, Muñoz MA, Carmona C, Guardado P, Galán M (1999) A fluorescence study of the molecular interactions of harmane with the nucleobases, their nucleosides and mononucleotides. Biophys Chem 80(1):41–52

    Article  PubMed  Google Scholar 

  34. Tapia MJ, Reyman D, Viñas MH, Carcedo C, Poyato JML (2003) Acid-base equilibria of methyl β-carboline-3-carboxylate in aqueous solution. J Lumin 101(3):227–234

    Article  CAS  Google Scholar 

  35. Reyman D, Tapia MJ, Carcedo C, Viñas MH (2003) Photophysical properties of methyl β-carboline-3-carboxylate mediated by hydrogen-bonded complexes—a comparative study in different solvents. Biophys Chem 104(3):683–696

    Article  PubMed  CAS  Google Scholar 

  36. Varela AP, Burrows HD, Douglas P, Miguel MG (2001) Triplet state studies of β-carbolines. J Photochem Photobiol A: Chem 146(1–2):29–36

    Article  CAS  Google Scholar 

  37. Dias A, Varela AP, Miguel MG, Maçanita AL, Becker RS (1992) β-carboline photosensitizers. 1. Photophysics, kinetics and excited-state equilibria in organic solvents, and theoretical calculations. J Phys Chem 96(25):10290–10296

    Article  CAS  Google Scholar 

  38. Ghiggino KP, Skilton PF, Thistlethwaite PJ (1985) β-carboline as fluorescence standard. J Photochem 31(1):113–121

    Article  CAS  Google Scholar 

  39. Pardo A, Reyman D, Poyato JML, Medina F (1992) Some β-carboline derivatives as fluorescence standards. J Lumin 51(5):269–274

    Article  CAS  Google Scholar 

  40. Tapia MJ, Reyman D, Viñas MH, Arroyo A, Poyato JML (2003) An experimental and theoretical approach to the acid-base and photophysical properties of 3-substituted β-carbolines in aqueous solutions. J Photochem Photobiol A: Chem 156(1):1–7

    Article  CAS  Google Scholar 

  41. Collado MC, Beleta J, Martinez E, Miralpeix M, Domènech T, Palacios JM, Hernandez J (1998) Functional and biochemical evidence for diazepam as a cyclic nucleotide phosphodiesterase type 4 inhibitor. Brit J Pharmacol 123:1047–1054

    Article  CAS  Google Scholar 

  42. Moriarty DD (1995) Anxiogenic effects of a beta-carboline on tonic immobility and open field behaviour in chickens (Gallus gallus). Pharmacol Biochem Behav 51(4):795–798

    Article  PubMed  CAS  Google Scholar 

  43. Seixas de Melo J, Fernandez PF (2001) Spectroscopy and photophysics of 4- and 7-hydroxycoumarins and their thione analogs. J Mol Struct 565–566:69–78

    Article  Google Scholar 

  44. Striker G, Subramaniam V, Seidel CAM, Volkmer A (1999) Photochromicity and fluorescence lifetimes of green fluorescent protein. J Phys Chem B 103(40):8612–8617

    Article  CAS  Google Scholar 

  45. Benesi HA, Hildebrand JH (1949) A Spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71(8):2703–2707

    Article  CAS  Google Scholar 

  46. Pretsch E, Affolter C, Buhlmann P (2000) In: Structure determination of organic compounds: tables of spectral data, 3rd edn. Springer Verlag, Berlin

  47. Cesar LMM, Mendes MA, Tormena CF, Marques MR, de Souza BM, Saidemberg DM, Bittencourt JC, Palma MS (2005) Isolation and chemical characterization of PwTx-II: a novel alkaloid toxin from the venom of the spider Parawixia bistriata (Araneidae, Araneae). Toxicon 46(7):786–796

    Article  PubMed  CAS  Google Scholar 

  48. Yahima T, Maccarrone G, Takani M, Contino A, Arena G, Takamido R, Hanaki M, Funahashi Y, Odani A, Yamauchi O (2003) Combined effects of electrostatic and π-π stacking interactions: selective binding of nucleotides and aromatic carboxylates by platinum(II)-aromatic ligand complexes. Chem Eur J 9(14):3341–3352

    Article  CAS  Google Scholar 

  49. Zubay GL (1998) In: Biochemistry, 4th edn. Wm.V. Brown, Dubuque, IA, p 633

  50. Ragunathan KG, Schneider H-J (1996) Nucleotide complexes with azoniacyclophanes containing phenyl-, biphenyl- or bipyridyl-units. J Chem Soc Perkin Trans 2:2597–2600

    Google Scholar 

  51. Murov H-J, Carmichael I, Hug GL (1993) Handbook of photochemistry, 2nd edn. Marcel Dekker, New York, p 208

    Google Scholar 

  52. Seidel CAM, Schulz A, Sauer MHM (1996) Nucleobase-specific quenching of fluorescent dyes. 1. Nucleobase one-electr\(K_{\text{G}}^{{\text{BH}}} \)on redox potentials and their correlation with static and dynamic quenching efficiencies. J Phys Chem 100(13):5541–5553

    Article  CAS  Google Scholar 

  53. Steenken S, Jovanovic SV (1997) How easily oxidizable is DNA? One-electron reduction potentials of adenosine and guanosine radicals in aqueous solution. J Am Chem Soc 119:617–618

    Article  CAS  Google Scholar 

  54. Steenken S, Telo JP, Novais HM, Candeias LP (1992) One-electron-reduction potentials of pyrimidine bases, nucleosides and nucleotides in aqueous solution. Consequences for DNA redox chemistry. J Am Chem Soc 114:4701–4709

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Financial support from Spanish Junta de Castilla y León and European Union (Bu29/04) and Acción Integrada Hispano-Portuguesa (HP2003-0077, Acçcão E/405) is gratefully acknowledged. We are indebted to Dr. Virginia Diez and Dr. Jacinto José Delgado for their valuable help with NMR experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hugh D. Burrows or María J. Tapia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Zubiri, I.X., Burrows, H.D., Seixas de Melo, J.S. et al. A Spectroscopic Study of the Interaction of the Fluorescent β-Carboline-3-carboxylic Acid N-methylamide with DNA Constituents: Nucleobases, Nucleosides and Nucleotides. J Fluoresc 18, 961–972 (2008). https://doi.org/10.1007/s10895-008-0355-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-008-0355-9

Keywords

Navigation