Skip to main content
Log in

Effect of Polystyrene Microsphere Surface to Fluorescence Lifetime Under Two-Photon Excitation

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Molecular assays such as immunoassays are often performed using solid carriers and fluorescent labels. In such an assay format a question can be raised on how much the fluorescence of the label is influenced by the bio-affinity binding events and the solid carrier surface. Since changes in fluorescence intensity as labels bind to surfaces are notoriously difficult to quantify other approaches are preferred. A good indicator, independent of the fluorescence intensity of the label, is the fluorescence lifetime of the marker fluorophore. Changes in fluorescence lifetime reliably indicate the presence of dynamic quenching, energy transfer or other de-excitation processes. A microsphere based assay system is studied under two-photon excitation. Changes in fluorescence lifetime are studied as labeled protein conjugates bind on microsphere surfaces – both direct on the surface and with a few nanometer distance from the surface. Fluorescence signal is measured from individual polystyrene microspheres and the fluorescence lifetime histogram is simultaneously recorded. The results indicate that self-quenching and quenching by the polystyrene surface are both present in such a system. However, the effect of the surface can be avoided by increasing the distance between the surface and the label. Typical distances achieved by a standard sandwich type of assay, are already sufficient to overcome the surface induced quenching in fluorescence detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Pfeifer L, Stein K, Fink U, Welker A, Wetzl B, Bastian P, Wolfbeis OS (2005) Improved routine bio-medical and bio-analytical online fluorescence measurements using fluorescence lifetime resolution. J Fluoresc 15(3):423–432

    Article  PubMed  CAS  Google Scholar 

  2. Turconi S, Bingham RP, Haupts U, Pope AJ (2001) Developments in fluorescence lifetime-based analysis for ultra-HTS. Drug Discov Today 6(12):S27–S39

    Article  CAS  Google Scholar 

  3. Valeur B (2002) Molecular Fluorescence, Principles and Applications, Wiley-VCH, Weinheim, Germany

  4. Lukosz W, Kunz RE (1977) Fluorescence lifetime of magnetic and electric dipoles near a dielectric interface. Opt Commun 20(2):195–199

    Article  Google Scholar 

  5. Lukosz W, Kunz RE (1979) Changes in fluorescence lifetimes induced by variation of the radiating molecules optical environment. Opt Commun 31(1):42–46

    Article  Google Scholar 

  6. Lakowicz JR (2001) Radiative decay engineering: Biophysical and biomedical applications. Analyt Biochem 298(1):1–24

    Article  PubMed  CAS  Google Scholar 

  7. Aslan K, Badugu R, Lakowicz JR, Geddes CD (2005) Metal-enhanced fluorescence from plastic substrates. J Fluoresc 15(2):99–104

    Article  PubMed  CAS  Google Scholar 

  8. Hoefelschweiger BK, Pfeifer L, Wolfbeis OS (2005) Screening scheme based on measurement of fluorescence lifetime in the nanosecond domain. J Biomol Screen 10(7):687–694

    Article  PubMed  CAS  Google Scholar 

  9. Horan PK, Wheeless LL (1977) Quantitative Single Cell Analysis and Sorting. Science 198(4313):149–157

    Article  PubMed  CAS  Google Scholar 

  10. Steinkamp JA, Keij JF (1999) Fluorescence intensity and lifetime measurement of free and particle-bound fluorophore in a sample stream by phase-sensitive flow cytometry. Rev Sci Instrum 70(12):4682–4688

    Article  CAS  Google Scholar 

  11. McHugh TM, Stites DP, Casavant CH, Fulwyler MJ (1986) Flow cytometric detection and quantitation of immune-complexes using human C1q-Coated Microspheres. J immunol Methods 95(1):57–61

    Article  PubMed  CAS  Google Scholar 

  12. Fulton RJ, McDade RL, Smith PL, Kienker LJ, Kettman JR (1997) Advanced multiplexed analysis with the FlowMetrix™ system. Clin Chem 43(9):1749–1756

    PubMed  CAS  Google Scholar 

  13. Jolley ME, Wang CHJ, Ekenberg SJ, Zuelke MS, Kelso DM (1984) Particle Concentration Fluorescence Immunoassay (PCFIA) - a new, rapid immunoassay technique with high-sensitivity. J Immunol Methods 67(1):21–35

    Article  PubMed  CAS  Google Scholar 

  14. Lovgren T, Heinonen P, Lehtinen P, Hakala H, Heinola J, Harju R, Takalo H, Mukkala VM, Schmid R, Lonnberg H, Pettersson K, Iitia A (1997) Sensitive bioaffinity assays with individual microparticles and time-resolved fluorometry. Clin Chem 43(10):1937– 1943

    PubMed  CAS  Google Scholar 

  15. Hakala H, Virta P, Salo H, Lonnberg H (1998) Simultaneous detection of several oligonucleotides by time-resolved fluorometry: the use of a mixture of categorized microparticles in a sandwich type mixed-phase hybridization assay. Nucleic Acids Res 26(24):5581–5588

    Article  PubMed  CAS  Google Scholar 

  16. Kulmala S, Suomi J (2003) Current status of modern analytical luminescence methods. Anal Chimica Acta 500(1–2):21–69

    Article  CAS  Google Scholar 

  17. Hanninen P, Soini A, Meltola N, Soini J, Soukka J, Soini E (2000) A new microvolume technique for bioaffinity assays using two-photon excitation. Nat Biotechnol 18(5):548–550

    Article  PubMed  CAS  Google Scholar 

  18. Waris ME, Meltola NJ, Soini JT, Soini E, Peltola OJ, Hanninen PE (2002) Two-photon excitation fluorometric measurement of homogeneous microparticle immunoassay for C-reactive protein. Anal Biochem 309(1):67–74

    Article  PubMed  CAS  Google Scholar 

  19. Lakowicz JR (1999) Principles of Fluorescence Spectroscopy, 2nd edn. Kluwer Academic/Plenum Publishers, New York

  20. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248(4951):73–76

    Article  PubMed  CAS  Google Scholar 

  21. Berland KM, So PT, Gratton E (1995) Two-photon fluorescence correlation spectroscopy: method and application to the intracellular environment. Biophys J 68(2):694–701

    PubMed  CAS  Google Scholar 

  22. Lakowicz JR, Gryczynski I, Gryczynski Z (1999) High throughput screening with multiphoton excitation. J Biomol Screen 4(6):355–361

    Article  PubMed  CAS  Google Scholar 

  23. Tirri M, Huttunen R, Toivonen J, Harkonen P, Soini J, Hanninen P (2005) Two-photon excitation in fluorescence polarization receptor-ligand binding assay. J Biomol Screen 10(4):314–319

    Article  PubMed  CAS  Google Scholar 

  24. Meltola NJ, Wahlroos R, Soini AE (2004) Hydrophilic labeling reagents of dipyrrylmethene-BF2 dyes for two-photon excited fluorometry: syntheses and photophysical characterization. J Fluoresc 14(5):635–647

    Article  PubMed  CAS  Google Scholar 

  25. Meltola NJ, Kettunen MJ, Soini AE (2005) Dipyrrylmetheneboron difluorides as labels in two-photon excited fluorometry. Part I-Immunometric assays. J Fluoresc 15(3):221–232

    Article  PubMed  CAS  Google Scholar 

  26. Meltola NJ, Soini AE, Hanninen PE (2004), Syntheses of novel dipyrrylmethene-BF2 dyes and their performance as labels in two-photon excited fluoroimmunoassay. J Fluoresc 14(2):129– 138

    Article  PubMed  CAS  Google Scholar 

  27. Soini JT, Soukka JM, Soini E, Hänninen PE (2002) Two-photon excitation microfluorometer for multiplexed single-step bioaffinity assays. Rev Sci Instrum 73(7):2680–2685

    Article  CAS  Google Scholar 

  28. Becker W, Hickl H, Zander C, Drexhage KH, Sauer M, Siebert S, Wolfrum J (1999) Time-resolved detection and identification of single analyte molecules in microcapillaries by time-correlated single-photon counting (TCSPC). Rev Sci Instrum 70(3):1835–1841

    Article  CAS  Google Scholar 

  29. Deka C, Lehnert BE, Lehnert NM, Jones GM, Sklar LA, Steinkamp JA (1996) Analysis of fluorescence lifetime and quenching of FITC-conjugated antibodies on cells by phase-sensitive flow cytometry. Cytometry 25(3):271–279

    Article  PubMed  CAS  Google Scholar 

  30. Good HP, Kallir AJ, Wild UP (1984) Comparison of fluorescence lifetime fitting techniques. J Phys Chem 88(22):5435–5441

    Article  CAS  Google Scholar 

  31. Nishimura G, Tamura M (2005) Artefacts in the analysis of temporal response functions measured by photon counting. Phys Med Biol 50(6):1327–1342

    Article  PubMed  Google Scholar 

  32. Kollner M, Wolfrum J (1992) How many photons are necessary for fluorescence-lifetime measurements. Chem Phys Lett 200(1–2):199–204

    Article  Google Scholar 

  33. Good HP, Kallir AJ, Wild UP (1984) Optimum pulse repetition rates for single Photon-counting experiments. J Luminescence 29(4):491–496

    Article  CAS  Google Scholar 

  34. Hemmilä IA (1991) Applications of fluorescence in Immunoassays. John Wiley & Sons, Inc., New York, USA

  35. Lakowicz JR (1991) Topics in Fluorescence Spectroscopy, vol 3, Biochemical Applications, Anonymous Plenum Publishers, New York

  36. Hanninen P, Waris M, Kettunen M, Soini E (2003), Reaction kinetics of a two-photon excitation microparticle based immunoassay - from modelling to practice. Biophys Chem 105(1):23–28

    Article  PubMed  CAS  Google Scholar 

  37. Xu C, Webb WW (1996), Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm. J Opt Soc Am B-Opt Phys 13(3):481–491

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by Finnish Graduate School of Chemical Sensors and Micro Analytical Systems, and Turku University Foundation (M.T.), Academy of Finland (R.W. and P.H.), Arctic Diagnostics Inc. and European Commission (N.M. and J.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko E. Tirri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tirri, M.E., Wahlroos, R., Meltola, N.J. et al. Effect of Polystyrene Microsphere Surface to Fluorescence Lifetime Under Two-Photon Excitation. J Fluoresc 16, 809–816 (2006). https://doi.org/10.1007/s10895-006-0124-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-006-0124-6

Keywords

Navigation