Skip to main content
Log in

Mechanical Design and Analysis of an Indirect-drive Cryogenic Target

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Cryogenic target based on indirect-drive concept is concerned widely in the inertial confinement fusion field. An indirect-drive cryogenic target is designed to field on the SGIII laser device of China. Capsule and hohlraum design refers to the NIF ignition target Rev5. The target fabrication encounters many engineering issues because of complicated structures and low temperature experimental environment. A tapered capillary is used to feed and support the capsule. And a jacket is designed to solve capillary fixing, gas filling, sealing and other structural issues. Forming a uniform fuel ice-layer on the capsule inner faces withstanding gravity or surface tension effect is a key feature of this cryogenic target. Thermal mechanical package is designed to have the best capacity of controlling temperature gradient across the capsule with a thermally noncontact method. Thermal analyses conclude the best interface conductance arguments and jacket material for the TMP design. Besides, structural reliability of the target after cooling is conservatively analyzed with an optimized model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. C.R. Gibson, D.P. Atkinson, J.A. Baltz et al., Design of the NIF cryogenic target system. Fusion Sci. Technol. 55(3), 233–236 (2009)

    Article  Google Scholar 

  2. D.R. Harding, M.D. Wittman, D.H. Edgell, Considerations and requirements for providing cryogenic targets for direct-drive inertial fusion implosions at the National Ignition Facility. Fusion Sci. Technol. 63(2), 95–105 (2013)

    Google Scholar 

  3. T. Malsbury, B. Haid, C. Gibson et al., Fielding the NIF cryogenic ignition target. Proceedings of the euspen International Conference, 1, 36–40 (2008)

  4. K. Kim, L. Mok, M.J. Erlenborn, Noncontact thermal gradient method for fabrication of uniform cryogenic inertial fusion target. J. Vac. Sci. Technol. 3(3), 1196–1200 (1985)

    Article  ADS  Google Scholar 

  5. L. Mok, K. Kim, T.P. Bernat et al., Temperature effects on the formation of a uniform liquid layer of hydrogen isotopes inside a spherical cryogenic ICF target. J. Vac. Sci. Technol. 1(2), 897–900 (1983)

    Article  ADS  Google Scholar 

  6. M.M.I. Raja, K. Kim, T.P. Bernat, An analysis of the stability of a uniform liquid fuel layer inside a spherical shell cryogenic inertial confinement fusion target. J. Vac. Sci. Technol. 7(3), 1170–1176 (1989)

    Article  ADS  Google Scholar 

  7. V. Varadarajan, K. Kim, T.P. Bernat, Thermally induced behavior of liquid mixtures of hydrogen isotopes inside a spherical inertial confinement fusion target. J. Vac. Sci. Technol. 5(4), 2750–2754 (1987)

    Article  ADS  Google Scholar 

  8. V. Varadarajan, K. Kim, T.P. Bernat, An analysis of the thermally induced formation of a uniform liquid layer of ternary deuterium-tritium mixture inside a cryogenic spherical shell inertial confinement fusion target. J. Vac. Sci. Technol. 6(3), 1876–1881 (1988)

    Article  ADS  Google Scholar 

  9. W.T. Shmayda, D.R. Harding, V.A. Versteeg et al., Micron-scaled defects on cryogenic targets: an assessment of condensate sources. Fusion Sci. Technol. 63(2), 87–94 (2013)

    Google Scholar 

  10. S.W. Haan, J.D. Lindl, D.A. Callahan et al., Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility. Phys. Plasmas 18(051001), 1–47 (2011)

    Google Scholar 

  11. R.R. Leach, J.E. Field, L. Mascio-Kegelmeyer et al., Image processing methods for characterizing cryogenic target quality during ice layer formation at the National Ignition Facility (NIF). High Power Lasers Fusion Res. II 8602(0H), 1–11 (2013)

    Google Scholar 

  12. R. Miles, J. Hamilton, J. Crawford et al., Microfabricated deep-etched structures for ICF and equation-of-state targets. Fusion Sci. Technol. 55(3), 308–312 (2009)

    Article  Google Scholar 

  13. B.J. Haid, T.N. Malsbury, C.R. Gibson et al., Measurement of total condensation on a shrouded cryogenic surface using a single quart crystal microbalance. Fusion Sci. Technol. 55(3), 276–282 (2009)

    Article  Google Scholar 

  14. J. Manzagol, G. Paquignon, D. Brisset et al., Evolution and progress of the cryogenic target shroud remover prototypes developed for the LMJ facility. Fusion Sci. Technol. 59(1), 159–165 (2011)

    Google Scholar 

  15. S. Bhandarkar, T. Parham, J. Fair, Modeling and experiments of compressible gas flow through microcapillary fill tubes on NIF targets. Fusion Sci. Technol. 59(1), 51–57 (2011)

    Article  Google Scholar 

  16. Y. Huang, J. Weng, J. Liu, Experimental investigation on sub-miliKelvin temperature control at liquid hydrogen temperatures. Cryogenics 61, 158–163 (2014)

    Article  Google Scholar 

  17. G. Moll, M. Martin, P. Baclet, Thermal simulations of the LMJ cryogenic target. Fusion Sci. Technol. 51(4), 737–746 (2008)

    Article  Google Scholar 

  18. H. Lei, P. Bi, Y. Yi et al., Solidification of an atomic fluid inside a spherical shell. Nucl. Fusion 55(6), 1–5 (2015)

    Article  Google Scholar 

  19. D.H. Edgell, R.S. Craxton, L.M. Elasky et al., Three-dimensional characterization of spherical cryogenic targets using ray-trace analysis of multiple shadowgraph views. Fusion Sci. Technol. 51(4), 717–726 (2008)

    Google Scholar 

  20. L. Risegari, M. Barucci, E. Olivieri et al., Measurement of the thermal conductivity of copper samples between 30 and 150 mK. Cryogenics 44(12), 875–878 (2004)

    Article  ADS  Google Scholar 

  21. F. Meydaneri, B. Saatçi, M. Özdemir, Thermal conductivities of solid and liquid phases for pure Al, pure Sn and their binary alloys. Fluid Phase Equilib. 298(1), 97–105 (2010)

    Article  Google Scholar 

  22. S. Samal, J. Lee, D.-Y. Jeong et al., Characterization of thermal conductivity of SiO2–Al2O3–Y2O3 glasses. Thermochim. Acta 604(1), 1–6 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The work in this article is accomplished with cooperation of the Cryogenic Target Research Team. The authors here want to thank for the material properties provided by the Material Research Department of CAEP, and good fabrication work from Corporation of Zheng Yang Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baibin Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Du, K., Lei, H. et al. Mechanical Design and Analysis of an Indirect-drive Cryogenic Target. J Fusion Energ 35, 673–682 (2016). https://doi.org/10.1007/s10894-016-0091-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-016-0091-0

Keywords

Navigation