Skip to main content

Advertisement

Log in

Cytokinin-Induced Phenotypes in Plant-Insect Interactions: Learning from the Bacterial World

  • Review Article
  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Recently, a renewed interest in cytokinins (CKs) has allowed the characterization of these phytohormones as key regulatory molecules in plant biotic interactions. They have been proved to be instrumental in microbe- and insect-mediated plant phenotypes that can be either beneficial or detrimental for the host-plant. In parallel, insect endosymbiotic bacteria have emerged as key players in plant-insect interactions mediating directly or indirectly fundamental aspects of insect nutrition, such as insect feeding efficiency or the ability to manipulate plant physiology to overcome food nutritional imbalances. However, mechanisms that regulate CK production and the role played by insects and their endosymbionts remain largely unknown. Against this backdrop, studies on plant-associated bacteria have revealed fascinating and complex molecular mechanisms that lead to the production of bacterial CKs and the modulation of plant-borne CKs which ultimately result in profound metabolic and morphological plant modifications. This review highlights major strategies used by plant-associated bacteria that impact the CK homeostasis of their host-plant, to raise parallels with strategies used by phytophagous insects and to discuss the possible role played by endosymbiotic bacteria in these CK-mediated plant phenotypes. We hypothesize that insects employ a CK-mix production strategy that manipulates the phytohormonal balance of their host-plant and overtakes plant gene expression causing a metabolic and morphological habitat modification. In addition, insect endosymbiotic bacteria may prove to be instrumental in these manipulations through the production of bacterial CKs, including specific forms that challenge the CK-degrading capacity of the plant (thus ensuring persistent effects) and the CK-mediated plant defenses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Absmanner B, Stadler R, Hammes UZ (2013) Phloem development in nematode-induced feeding sites: the implications of auxin and cytokinin. Front Plant Sci 4:241–255

    PubMed Central  PubMed  Google Scholar 

  • Akiyoshi DE, Regier DA, Gordon MP (1987) Cytokinin production by Agrobacterium and Pseudomonas spp. J Bacteriol 169:4242–4248

    CAS  PubMed Central  PubMed  Google Scholar 

  • Akiyoshi DE, Regier DA, Gordon MP (1989) Nucleotide sequence of the tzs gene from Pseudomonas solanacearum strain K60. Nucleic Acids Res 17:8886

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baldwin IT (1998) Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proc Natl Acad Sci U S A 95:8113–8118

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baldwin IT (2001) An ecologically motivated analysis of plant-herbivore interactions in native tobacco. Plant Physiol 127:1449–1458

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barr KL, Hearne LB, Briesacher S, Clark TL, Davis GE (2010) Microbial symbionts in insects influence down-regulation of defense genes in maize. PLoS One 5:e11339

    PubMed Central  PubMed  Google Scholar 

  • Behr M, Motyka V, Weihmann F, Malbeck J, Deising HB, Wirsel SG (2012) Remodeling of cytokinin metabolism at infection sites of Colletotrichum graminicola on maize leaves. Mol Plant Microbe Interact 25:1073–1082

    CAS  PubMed  Google Scholar 

  • Biere A, Bennett AE (2013) Three-way interactions between plants, microbes and insects. Funct Ecol 27:567–573

    Google Scholar 

  • Body M, Kaiser W, Dubreuil G, Casas J, Giron D (2013) Leaf-miners co-opt microorganisms to enhance their nutritional environment. J Chem Ecol 39:969–977

    CAS  PubMed  Google Scholar 

  • Chen X, Li S, Aksoy S (1999) Concordant evolution of a symbiont with its host insect species: molecular phylogeny of genus Glossina and its bacteriome-associated endosymbiont, Wigglesworthia glossinidia. J Mol Evol 48:49–58

    CAS  PubMed  Google Scholar 

  • Choi J, Choi D, Lee S, Ryu CM, Hwang I (2011) Cytokinins and plant immunity: old foes or new friends? Trends Plant Sci 16:388–394

    CAS  PubMed  Google Scholar 

  • Depuydt S, Trenkamp S, Fernie AR, Elftieh S, Renou JP, Vuylsteke M, Holsters M, Vereecke D (2009) An integrated genomics approach to define niche establishment by Rhodococcus fascians. Plant Physiol 149:1366–1386

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dervinis C, Frost CJ, Lawrence SD, Novak NG, Davis JM (2010) Cytokinin primes plant responses to wounding and reduces insect performance. J Plant Growth Regul 29:289–296

    CAS  Google Scholar 

  • Dicke M, Baldwin IT (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci 15:167–175

    CAS  PubMed  Google Scholar 

  • Douglas AE (1989) Mycetocyte symbiosis in insects. Biol Rev Camb Philos Soc 64:409–434

    CAS  PubMed  Google Scholar 

  • Douglas AE (2008) Conflict, cheats and persistence of symbioses. New Phytol 177:849–858

    PubMed  Google Scholar 

  • Douglas AE (2009) The microbial dimension in insect nutritional ecology. Funct Ecol 23:38–47

    Google Scholar 

  • Douglas AE (2013) Microbial brokers of insect-plant interactions revisited. J Chem Ecol 39:952–961

    CAS  PubMed Central  PubMed  Google Scholar 

  • Elzen GW (1983) Cytokinins and insect galls. Comput Biochem Physiol A 76:17–19

    Google Scholar 

  • Engelbrecht L (1971) Cytokinins in buds and leaves during growth, maturity and aging (with a comparison of two bioassays). Biochem Physiol Pflanz 162:547–558

    CAS  Google Scholar 

  • Engelbrecht L, Orban U, Heese W (1969) Leaf-miner caterpillars and cytokinins in the “green islands” of autumn leaves. Nature 223:319–321

    CAS  Google Scholar 

  • Erb M, Ton J, Degenhardt J, Turlings TCJ (2008) Interactions between arthropod-induced aboveground and belowground defences in plants. Plant Physiol 146:867–874

    CAS  PubMed Central  PubMed  Google Scholar 

  • Erb M, Meldau S, Howe GA (2012) Role of phytohormones in insect-specific plant reactions. Trends Plant Sci 17:250–259

    CAS  PubMed Central  PubMed  Google Scholar 

  • Falco MC, Marbach PAS, Pompermayer P, Lopes FCC, Silva-Filho (2001) Mechanisms of sugarcane response to herbivory. Genet Mol Biol 24:113–122

    CAS  Google Scholar 

  • Farnsworth E (2004) Hormones and shifting ecology throughout plant development. Ecology 85:5–15

    Google Scholar 

  • Feldhaar H (2011) Bacterial symbionts as mediators of ecologically important traits of insect hosts. Ecol Entomol 36:533–543

    Google Scholar 

  • Frago E, Dicke M, Godfray HC (2012) Insect symbionts as hidden players in insect-plant interactions. Trends Ecol Evol 27:705–711

    PubMed  Google Scholar 

  • Frébort I, Kowalska M, Hluska T, Frébortová J, Galuszka P (2011) Evolution of cytokinin biosynthesis and degradation. J Exp Bot 62:2431–2452

    PubMed  Google Scholar 

  • Frugier F, Murray KJ, Crespi M, Szczyglowszki K (2008) Cytokinin: secret agent of symbiosis. Trends Plant Sci 13:115–120

    CAS  PubMed  Google Scholar 

  • Giron D, Huguet E (2011) A genomically tractable and ecologically relevant model herbivore for a model plant: new insights into the mechanisms of insect–plant interactions and evolution. Mol Ecol 33:990–994

    Google Scholar 

  • Giron D, Kaiser W, Imbault N, Casas J (2007) Cytokinin-mediated leaf manipulation by a leafminer caterpillar. Biol Lett 3:340–343

    CAS  PubMed Central  PubMed  Google Scholar 

  • Giron D, Frago E, Glevarec G, Pieterse CMJ, Dicke M (2013) Cytokinins as key regulators in plant–microbe–insect interactions: connecting plant growth and defence. Funct Ecol 27:599–609

    Google Scholar 

  • Goggin FL (2007) Plant-aphid interactions: molecular and ecological perspectives. Curr Opin Plant Biol 10:399–408

    CAS  PubMed  Google Scholar 

  • Gonzalez-Rizzo S, Crespi M, Frugier F (2006) The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell 18:2680–2693

    CAS  PubMed Central  PubMed  Google Scholar 

  • Großkinsky DK, Naseem M, Abdelmohsen UR, Plickert N, Engelke T, Zeier TG, Novák O, Strnad M, Pfeifhofer H, Van der Graaff E, Simon U, Roitsch T (2011) Cytokinins mediate resistance against Pseudomonas syringae in tobacco through increased antimicrobial phytoalexin synthesis independent of salicylic acid signaling. Plant Physiol 157:815–830

    PubMed Central  PubMed  Google Scholar 

  • Hann DR, Domínguez-Ferreras A, Motyka V, Dobrev PI, Schornack S, Jehle A, Felix G, Chinchilla D, Rathjen JP, Boller T (2014) The Pseudomonas type III effector HopQ1 activates cytokinin signaling and interferes with plant innate immunity. New Phytol 201:585–598

    CAS  Google Scholar 

  • Harcombe W, Hoffmann AA (2004) Wolbachia effects in Drosophila melanogaster: in search of fitness benefits. J Invertebr Pathol 87:45–50

    CAS  PubMed  Google Scholar 

  • Harris HL, Brennan LJ, Keddie BA, Braig HR (2010a) Bacterial symbionts in insects: balancing life and death. Symbiosis 51:37–53

    Google Scholar 

  • Harris MO, Freeman TP, Anderson KG, Moore JA, Payne SA, Anderson KM, Rohfritsch O (2010b) H gene-mediated resistance to Hessian fly exhibits features of penetration resistance to fungi. Phytopathol 100:279–289

    CAS  Google Scholar 

  • Hermsmeier D, Schittko U, Baldwin IT (2001) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata: I. Large-scale changes in the accumulation of growth- and defense-related plant mRNAs. Plant Physiol 125:683–700

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hosokawa T, Kikuchi Y, Fukatsu T (2007) How many symbionts are provided by mothers, acquired by offspring, and needed for successful vertical transmission in an obligate insect–bacterium mutualism? Mol Ecol 16:5316–5325

    PubMed  Google Scholar 

  • Hwang HH, Yang FJ, Cheng TF, Chen YC, Lee YL, Tsai YL, Lai EM (2013) The Tzs protein and exogenous cytokinin affect virulence gene expression and bacterial growth of Agrobacterium tumefaciens. Phytopathology 103:888–899

    CAS  PubMed  Google Scholar 

  • Inbar M, Gerling D (2008) Plant-mediated interactions between whiteflies, herbivores, and natural enemies. Annu Rev Entomol 53:431–448

    CAS  PubMed  Google Scholar 

  • Jameson P (2000) Cytokinins and auxins in plant-pathogen interactions—an overview. Plant Growth Regul 32:69–380

    Google Scholar 

  • Janson EM, Stireman JO 3rd, Singer MS, Abbot P (2008) Phytophagous insect-microbe mutualisms and adaptive evolutionary diversification. Evolution 62:997–1012

    PubMed  Google Scholar 

  • Jiang CJ, Shimono M, Sugano S, Kojima M, Liu X, Inoue H, Sakakibara H, Takatsuji H (2013) Cytokinins act synergistically with salicylic acid to activate defence gene expression in rice. Mol Plant Microbe Interact 26:287–296

    CAS  PubMed  Google Scholar 

  • Kaiser W, Huguet E, Casas J, Commin C, Giron D (2010) Plant green-island phenotype induced by leaf-miners is mediated by bacterial symbionts. Proc R Soc B 277:2311–2319

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kakimoto T (2003) Perception and signal transduction of cytokinins. Annu Rev Plant Biol 54:605–627

    CAS  PubMed  Google Scholar 

  • Kempema LA, Cui X, Holzer FM, Walling LL (2007) Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses to aphids. Plant Physiol 143:849–865

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory: the emerging molecular analysis. Annu Rev Plant Biol 53:299–328

    CAS  PubMed  Google Scholar 

  • Kessler AR, Halitschke R, Baldwin IT (2004) Silencing the jasmonate cascade: induced plant defenses and insect populations. Science 305:665–668

    CAS  PubMed  Google Scholar 

  • Kieber JJ, Schaller GE (2014) Cytokinins. Arabidopsis book 12:e0168

  • Kisiala A, Laffont C, Emery RJ, Frugier F (2013) Bioactive cytokinins are selectively secreted by Sinorhizobium meliloti nodulating and nonnodulating strains. Mol Plant Microbe Interact 26:1225–1231

    CAS  PubMed  Google Scholar 

  • Lai CY, Baumann L, Baumann P (1994) Amplification of trpEG: adaptation of Buchnera aphidicola to an endosymbiotic association with aphids. Proc Natl Acad Sci U S A 91:3819–3823

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leicht IJ (1994) Induction and development of the bean gall caused by Pontania proxima. In: Williams MAJ (ed) Plant galls: organisms, interactions, population. Oxford University Press, New-York, pp 283–300

    Google Scholar 

  • Lichter A, Barash I, Valinsky L, Manulis S (1995) The genes involved in cytokinin biosynthesis in Erwinia herbicola pv. gypsophilae: characterization and role in gall formation. J Bacteriol 177:4457–4465

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lohar DP, Schaff JE, Laskey JG, Kieber JJ, Bilyeu KD, Bird DM (2004) Cytokinins play opposite roles in lateral root formation, and nematode and rhizobial symbioses. Plant J 38:203–214

    CAS  PubMed  Google Scholar 

  • Ludwig-Müller J, Schuller A (2008) What can we learn from clubroots: alterations in host roots and hormone homeostasis caused by Plasmodiophora brassicae. Eur J Plant Pathol 121:291–302

    Google Scholar 

  • Mapes CC, Davies PJ (2001) Cytokinins in the ball gall of Solidago altissima and in the gall forming larvae of Eurosta solidaginis. New Phytol 151:203–212

    CAS  Google Scholar 

  • McDermott J, Meilan R, Thornburg R (1996) Plant-insect interactions: The hackberry nipple gall.World Wide Web J Bio. http://epress.com/w3jbio/vol2/mcdermott/mcdermott.html

  • Meldau S, Erb M, Baldwin IT (2012) Defence on demand: mechanisms behind optimal defence patterns. Ann Bot 110:1503–1514

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mok DWS, Mok MC (2001) Cytokinin metabolism and action. Annu. Rev Plant Physiol Plant Mol Biol 52:89–118

    CAS  Google Scholar 

  • Moran NA (2007) Symbiosis as an adaptive process and source of phenotypic complexity. Proc Natl Acad Sci U S A 104(Suppl 1):8627–8633

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moran NA, Degnan PH (2006) Functional genomics of Buchnera and the ecology of aphid hosts. Mol Ecol 15:1251–1261

    CAS  PubMed  Google Scholar 

  • Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42:165–190

    CAS  PubMed  Google Scholar 

  • Murray JD, Karas BJ, Sato S, Tabata S, Amyot L, Szczyglowski K (2007) A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis. Science 315:101–104

    CAS  PubMed  Google Scholar 

  • Perlman SJ, Zchori-Fein E, Hunter MS (2006) The emerging diversity of Rickettsia. Proc R Soc B 273:2097–2106

    PubMed Central  PubMed  Google Scholar 

  • Pertry I, Václavíková K, Depuydt S, Galuszka P, Spíchal L, Temmerman W, Stes E, Schmülling T, Kakimoto T, Van Montagu MCE, Strnad M, Holsters M, Tarkowski P, Vereecke D (2009) Identification of Rhodococcus fascians cytokinins and their modus operandi to reshape the plant. Proc Natl Acad Sci U S A 106:929–934

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pertry I, Václavíková K, Gemrotová M, Spíchal L, Galuszka P, Depuydt S, Temmerman W, Stes E, De Keyser A, Riefler M, Biondi S, Novák O, Schmülling T, Strnad M, Tarkowski P, Holsters M, Vereecke D (2010) Rhodococcus fascians impacts plant development through the dynamic fas-mediated production of a cytokinin mix. Mol Plant Microbe Interact 23:1164–1174

    CAS  PubMed  Google Scholar 

  • Pieterse CM, Dicke M (2007) Plant interactions with microbes and insects: from molecular mechanisms to ecology. Trends Plant Sci 12:564–569

    CAS  PubMed  Google Scholar 

  • Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    CAS  PubMed  Google Scholar 

  • Plet J, Wasson A, Ariel F, Le Signor C, Baker D, Mathesius U, Crespi M, Frugier F (2011) MtCRE1-dependent cytokinin signaling integrates bacterial and plant cues to coordinate symbiotic nodule organogenesis in Medicago truncatula. Plant J 65:622–633

    CAS  PubMed  Google Scholar 

  • Podlešáková K, Fardoux J, Patrel D, Bonaldi K, Novák O, Strnad M, Giraud E, Spíchal L, Nouwen N (2013) Rhizobial synthesized cytokinins contribute to but are not essential for the symbiotic interaction between photosynthetic Bradyrhizobia and Aeschynomene légumes. Mol Plant Microbe Interact 26:1232–1238

    PubMed  Google Scholar 

  • Poelman EH, Broekgaarden C, Van Loon JJA, Dicke M (2008a) Early season herbivore differentially affects plant defence responses to subsequently colonizing herbivores and their abundance in the field. Mol Ecol 17:3352–3365

    CAS  PubMed  Google Scholar 

  • Poelman EH, Van Loon JJA, Dicke M (2008b) Consequences of variation in plant defence for biodiversity at higher trophic levels. Trends Plant Sci 13:534–541

    CAS  PubMed  Google Scholar 

  • Poelman EH, Zheng SJ, Zhang Z, Heemskerk NM, Cortesero AM, Dicke M (2011) Parasitoid-specific induction of plant responses to parasitized herbivores affects colonization by subsequent herbivores. Proc Natl Acad Sci U S A 108:19647–19652

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robert CAM, Frank DL, Leach KA, Turlings TCJ, Hibbard BE, Erb M (2013) Direct and indirect plant defences are not suppressed by endosymbionts of a specialist root herbivore. J Chem Ecol 39:507–515

    CAS  PubMed  Google Scholar 

  • Robert-Seilaniantz A, Navarro L, Bari R, Jones JDG (2007) Pathological hormone imbalances. Curr Opin Plant Biol 10:372–379

    CAS  PubMed  Google Scholar 

  • Robert-Seilaniantz A, Grant M, Jones JDG (2011) Hormone crosstalk in plant disease and defense: more than just JASMONATE-SALICYLATE antagonism. Annu Rev Phytopathol 49:317–343

    CAS  PubMed  Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res p. LSMR-21

  • Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449

    CAS  PubMed  Google Scholar 

  • Sano H, Seo S, Orudgev E, Youssefian S, Ishizuka K, Ohashi Y (1994) Expression of the gene for a small GTP binding protein in transgenic tobacco elevates endogenous cytokinin levels, abnormally induces salicylic acid in response to wounding, and increases resistance to tobacco mosaic virus infection. Proc Natl Acad Sci U S A 91:10556–10560

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schäfer M, Gase K, Reichelt M, Baldwin I, Meldau S (2013) Real time’ genetic manipulation: a new tool for ecological field studies. Plant J 76:506–518

    PubMed  Google Scholar 

  • Schultz JC (2002) Signals shared by plants and insects and the potential for phylogenetic espionage. J Integr Comp Biol 42:454–462

    CAS  Google Scholar 

  • Schultz JC, Appel HM (2004) Cross-kingdom cross-talk: hormones shared by plants and their insect herbivores. Ecology 85:70–77

    Google Scholar 

  • Schwachtje J, Baldwin IT (2008) Why does herbivore attack reconfigure primary metabolism? Plant Physiol 146:845–851

    CAS  PubMed Central  PubMed  Google Scholar 

  • Siemens J, Keller I, Sarx J, Kunz S, Schuller A, Nagel W, Schmülling T, Parniske M, Ludwig-Müller J (2006) Transcriptome analysis of Arabidopsis clubroots indicate a key role for cytokinins in disease development. Mol Plant Microbe Interact 19:480–494

    CAS  PubMed  Google Scholar 

  • Soler R, Van der Putten WH, Harvey JA, Vet LEM, Dicke M, Bezemer M (2012) Root herbivore effects on aboveground multitrophic interactions: patterns, processes and mechanisms. J Chem Ecol 38:755–767

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spíchal L (2012) Cytokinins—recent news and views of evolutionally old molecules. Funct Plant Biol 39:267–284

    Google Scholar 

  • Stes E, Vandeputte OM, El Jaziri M, Holsters M, Verecke D (2011) A successful bacterial coup d’état: how Rhodococcus fascians redirects plant development. Annu Rev Phytopathol 49:69–86

    CAS  PubMed  Google Scholar 

  • Stes E, Francis I, Pertry I, Dolzblasz A, Depuydt S, Vereecke D (2013) The leafy gall syndrome induced by Rhodococcus fascians. FEMS Microbiol Lett 342:187–194

    CAS  PubMed  Google Scholar 

  • Straka JR, Hayward AR, Emery RJN (2010) Gall-inducing Pachypsylla celtidis (Psyllidae) infiltrate hackberry trees with high concentrations of phytohormones. J Plant Interact 5:197–203

    CAS  Google Scholar 

  • Stuart JJ, Chen MS, Shukle R, Harris MO (2012) Gall midges (Hessian flies) as plant pathogens. Annu Rev Phytopathol 50:339–358

    CAS  PubMed  Google Scholar 

  • Tarkowski P, Václavíková K, Novák O, Pertry I, Hanuš J, Whenham R, Vereecke D, Šebela M, Strnad M (2010) Analysis of 2-methylthio-derivatives of isoprenoid cytokinins by liquid chromatography-tandem mass spectrometry. Anal Chim Acta 680:86–91

    CAS  PubMed  Google Scholar 

  • Thaler JS, Fidantsef AL, Duffey SS, Bostock RM (1999) Trade-offs in plant defense against pathogens and herbivores: a field demonstration of chemical elicitors of induced resistance. J Chem Ecol 25:1597–1609

    CAS  Google Scholar 

  • Tirichine L, Sandal N, Madsen LH, Radutoiu S, Albrektsen AS, Sato S, Asamizu E, Tabata S, Stougaard J (2007) A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science 315:104–107

    CAS  PubMed  Google Scholar 

  • Vadassery J, Ritter C, Venus Y, Camehl I, Varma A, Shahollari B, Novák O, Strnad M, Ludwig-Müller J, Oelmüller R (2008) The role of auxins and cytokinins in the mutualistic interaction between Arabidopsis and piriformospora indica. Mol Plant Microbe Interact 21:1371–1383

    CAS  PubMed  Google Scholar 

  • Vereecke D, Cornelis K, Temmerman W, Jaziri M, Van Montagu M, Holsters M, Goethals K (2002) Chromosomal locus that affects pathogenicity of Rhodococcus fascians. J Bacteriol 184:1112–1120

    CAS  PubMed Central  PubMed  Google Scholar 

  • Voelckel C, Baldwin IT (2003) Detecting herbivore-specific transcriptional responses in plants with multiple DDRT-PCR and subtractive library procedures. Physiol Plant 118:240–252

    CAS  Google Scholar 

  • Walters DR, McRoberts N (2006) Plants and biotrophs: a pivotal role for cytokinins? Trends Plant Sci 11:581–586

    CAS  PubMed  Google Scholar 

  • Walters DR, McRoberts N, Fitt BD (2008) Are green islands red herrings? Significance of green islands in plant interactions with pathogens and pests. Biol Rev Camb Philos Soc 83:79–102

    PubMed  Google Scholar 

  • Werner T, Schmülling T (2009) Cytokinin action in plant development. Curr Opin Plant Biol 12:527–538

    CAS  PubMed  Google Scholar 

  • Whiteman NK, Groen SC, Chevasco D, Beckwith N, Gregory TR, Denoux C, Mammarella N, Ausubel FM, Pierce NE (2011) Mining the plant-insect interface with a leafmining Drosophila of Arabidopsis. Mol Ecol 20:995–1014

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi H, Tanaka H, Hasegawa M, Tokuda M, Asami T, Suzuki Y (2012) Phytohormones and willow gall induction by a gall-inducing sawfly. New Phytol 196:586–595

    CAS  PubMed  Google Scholar 

Download references

Ackowledgements

This study was supported by the ANR project ECOREN ANR-JC05-46491 and the Région Centre project 201000047141 to D. GIRON. Further support was also provided by the National Centre of Scientific Research (CNRS) and the University François-Rabelais. We also thank D. Daudu, M. Body, J. Casas, E. Huguet, W. Kaiser, A. Lanoue, N. Imbault, J. Crèche, N. Guivarch’, J. Schultz, M. Dicke, and H. Appel for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Giron.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giron, D., Glevarec, G. Cytokinin-Induced Phenotypes in Plant-Insect Interactions: Learning from the Bacterial World. J Chem Ecol 40, 826–835 (2014). https://doi.org/10.1007/s10886-014-0466-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-014-0466-5

Keywords

Navigation