Skip to main content
Log in

Glycoalkaloids of Wild and Cultivated Solanum: Effects on Specialist and Generalist Insect Herbivores

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Plant domestication by selective breeding may reduce plant chemical defense in favor of growth. However, few studies have simultaneously studied the defensive chemistry of cultivated plants and their wild congeners in connection to herbivore susceptibility. We compared the constitutive glycoalkaloids (GAs) of cultivated potato, Solanum tuberosum, and a wild congener, S. commersonii, by liquid chromatography coupled to mass spectrometry. We also determined the major herbivores present on the two species in field plots, and tested their preference for the plants and their isolated GAs in two-choice bioassays. Solanum commersonii had a different GA profile and higher concentrations than S. tuberosum. In the field, S. tuberosum was mostly attacked by the generalist aphids Myzus persicae and Macrosiphum euphorbiae, and by the specialist flea beetle Epitrix argentinensis. In contrast, the most common herbivore on S. commersonii was the specialist sawfly Tequus sp. Defoliation levels were higher on the wild species, probably due to the chewing feeding behavior of Tequus sp. As seen in the field, M. persicae and E. argentinensis preferred leaf disks of the cultivated plant, while Tequus sp. preferred those of the wild one. Congruently, GAs from S. commersonii were avoided by M. persicae and preferred by Tequus sp. The potato aphid performed well on both species and was not deterred by S. commersonii GAs. These observations suggest that different GA profiles explain the feeding preferences of the different herbivores, and that domestication has altered the defensive capacity of S. tuberosum. However, the wild relative is still subject to severe defoliation by a specialist herbivore that may cue on the GAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali JG, Agrawal AA (2012) Specialist versus generalist insect herbivores and plant defense. Trends Plant Sci 17:293–302

    Article  CAS  PubMed  Google Scholar 

  • Barker A, Schaffner U, Boevé J-L (2002) Host specificity and host recognition in a chemically-defended herbivore, the tenthredinid sawfly Rhadinoceraea nodicornis. Entomol Exp Appl 104:61–68

    Article  CAS  Google Scholar 

  • Bautista A, Parra F, Espinosa-García FJ (2012) Efectos de la domesticación de plantas en la diversidad fitoquímica. In: Rojas JC, Malo EA (eds) Temas selectos en ecología química de insectos. El Colegio de la Frontera Sur (ECOSUR), México, pp 253–267

    Google Scholar 

  • Bazzaz FA, Chiariello NR, Coley PD, Pitelka LF (2009) Allocating resources to reproduction and defenses. Bioscience 37:58–67

    Article  Google Scholar 

  • Bellota E, Medina RF, Bernal JS (2013) Physical leaf defenses–altered by Zea life-history evolution, domestication, and breeding–mediate oviposition preference of a specialist leafhopper. Entomol Exp Appl 149:185–195. doi:10.1111/eea.12122

  • Bernays E, Graham M (1988) On the evolution of host specificity in phytophagous arthropods. Ecology 69:886–892

    Article  Google Scholar 

  • Bowers MD, Boockvar K, Collinge SK (1993) Iridoid glycosides of Chelone glabra (Scrophulariaceae) and their sequestration by larvae of a sawfly, Tenthredo grandis (Tenthredinidae). J Chem Ecol 19:815–823

    Article  CAS  PubMed  Google Scholar 

  • Carne PB (1962) The characteristics and behaviour of the saw-fly Perga affinis affinis (Hymenoptera). Aust J Zool 10:1–38

    Article  Google Scholar 

  • Cole RA (1997) The relative importance of glucosinolates and amino acids to the development of two aphid pests Brevicoryne brassicae and Myzus persicae on wild and cultivated brassica species. Entomol Exp Appl 85:121–133. doi:10.1046/j.1570-7458.1997.00242.x

  • Crockett SL, Boevé J-L (2011) Flavonoid glycosides and naphthodianthrones in the sawfly Tenthredo zonula and its host-plants, Hypericum perforatum and H. hirsutum. J Chem Ecol 37:943–952. doi:10.1007/s10886-011-0001-x

  • Dávila-Flores AM, DeWitt TJ, Bernal JS (2013) Facilitated by nature and agriculture: performance of a specialist herbivore improves with host-plant life history evolution, domestication, and breeding. Oecologia 173:1425–1437. doi:10.1007/s00442-013-2728-2

    Article  PubMed  Google Scholar 

  • Distl M, Wink M (2009) Identification and quantification of steroidal alkaloids from wild tuber-bearing Solanum species by HPLC and LC-ESI-MS. Potato Res 52:79–104

    Article  CAS  Google Scholar 

  • Eich E (2008) Solanaceae and Convolvulaceae: Secondary metabolites. Springer, Germany

    Book  Google Scholar 

  • Eisner T, Johnessee JS, Carrel J (1974) Defensive use by an insect of a plant resin. Science 184:996–999

    Article  CAS  PubMed  Google Scholar 

  • Ferreira F, Moyna P, Soule S, Vázquez A (1993) Rapid determination of Solanum glycoalkaloids thin-layer chromatographic scanning. J Chromatogr A 653:380–384

    Article  CAS  Google Scholar 

  • Flanders KL, Hawkes JG, Radcliffe EB, Lauer FI (1992) Insect resistance in potatoes: sources, evolutionary relationships, morphological and chemical defenses, and ecogeographical associations. Euphytica 61:83–111

    Article  CAS  Google Scholar 

  • Flanders KL, Radcliffe EB, Hawkes JG (1997) Geographic distribution of insect resistance in potatoes. Euphytica 93:201–221

    Article  Google Scholar 

  • Fragoyiannis DA, McKinlay RG, Mello JPFD (1998) Studies of the growth, development and reproductive performance of the aphid Myzus persicae on artificial diets containing potato glycoalkaloids. Entomol Exp Appl 88:59–66

    Article  CAS  Google Scholar 

  • Fréchette B, Bejan M, Lucas E, Giordanengo P, Vincent C (2010) Resistance of wild Solanum accessions to aphids and other potato pests in Quebec field conditions. J Insect Sci 10(161):1–16. doi:10.1673/031.010.14121

    Article  Google Scholar 

  • Friedman M (2002) Tomato glycoalkaloids: role in the plant and in the diet. J Agric Food Chem 50:5751–5780

    Article  CAS  PubMed  Google Scholar 

  • Friedman M, McDonald GM, Filadelfi-keszi PM (1997) Potato glygcoalkaloids: chemistry, analysis, safety, and plant physiology. Crit Rev Plant Sci 16:55–132

    Article  CAS  Google Scholar 

  • Gepts P (2004) Crop domestication as a long-term selection experiment. Plant Breed Rev 24 (Part 2):1–44

  • Gols R, Bukovinszky T, van Dam NM, Dicke M, Bullock JM, Harvey JA (2008a) Performance of generalist and specialist herbivores and their endoparasitoids differs on cultivated and wild Brassica populations. J Chem Ecol 34:132–143. doi:10.1007/s10886-008-9429-z

  • Gols R, Wagenaar R, Bukovinszky T, van Dam NM, Dicke M, Bullock JM, Harvey JA (2008b) Genetic variation in defense chemistry in wild cabbages affects herbivores and their endoparasitoids. Ecology 89:1616–1626

    Article  PubMed  Google Scholar 

  • Gregory P, Sinden SL, Osman SF, Tingey WM, Chessin DA (1981) Glycoalkaloids of wild, tuber-bearing Solanum species. J Agric Food Chem 29:1212–1215

    Article  CAS  Google Scholar 

  • Güntner C, Gonzalez A, Dos Reis R, González G, Vázquez A, Ferreira F, Moyna P (1997) Effect of Solanum glycoalkaloids on potato aphid, Macrosiphum euphorbiae. J Chem Ecol 23:1651–1659

    Article  Google Scholar 

  • Herms DA, Mattson WJ (1992) The dilemma of plants: to grow or defend. Q Rev Biol 67:283–283. doi:10.1086/417659

    Article  Google Scholar 

  • Jansky SH, Simon R, Spooner DM (2009) A test of taxonomic predictivity: resistance to the Colorado potato beetle in wild relatives of cultivated potato. J Econ Entomol 102:422–431

    Article  CAS  PubMed  Google Scholar 

  • Kowalski SP, Domek JM, Deahl KL, Sanford LL (1999) Performance of Colorado potato beetle larvae, Leptinotarsa decemlineata (Say), reared on synthetic diets supplemented with Solanum glycoalkaloids. Amer J Potato Res 76:305–312

    Article  CAS  Google Scholar 

  • Le Roux V, Campan EDM, Dubois F, Vincent C, Giordanengo P (2007) Screening for resistance against Myzus persicae and Macrosiphum euphorbiae among wild Solanum. Ann Appl Biol 151:83–88. doi:10.1111/j.1744-7348.2007.00155.×

    Article  Google Scholar 

  • Lorenzen JH, Balbyshev NF, Lafta AM, Tian X, Sagredo B, Casper H (2001) Resistant potato selections contain leptine and inhibit development of the Colorado potato beetle (Coleoptera: Chrysomelidae). J Econ Entomol 94:1260–1267

    Article  CAS  PubMed  Google Scholar 

  • Massei G, Hartley SE (2000) Disarmed by domestication? Induced responses to browsing in wild and cultivated olive. Oecologia 122:225–231

    Article  Google Scholar 

  • Morrow PA, Bellas TE, Eisner T (1976) Eucalyptus oils in the defensive oral discharge of Australian sawfly larvae (Hymenoptera: Pergidae). Oecologia (Berl) 24:193–206

    Article  Google Scholar 

  • Mulatu B, Applebaum SW, Kerem Z, Coll M (2006) Tomato fruit size, maturity and α-tomatine content influence the performance of larvae of potato tuber moth Phthorimaea operculella (Lepidoptera: Gelechiidae). Bull Entomol Res 96:173–178. doi:10.1079/ber2005412

    Article  CAS  PubMed  Google Scholar 

  • Müller C, Agerbirk N, Olsen CE, Boevé JL, Schaffner U, Brakefield PM (2001) Sequestration of host plant glucosinolates in the defensive hemolymph of the sawfly Athalia rosae. J Chem Ecol 27:2505–2516

    Article  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) Revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nenaah G (2011a) Individual and synergistic toxicity of solanaceous glycoalkaloids against two coleopteran stored-product insects. J Pest Sci 84:77–86. doi:10.1007/s10340-010-0329-y

    Article  Google Scholar 

  • Nenaah GE (2011b) Toxic and antifeedant activities of potato glycoalkaloids against Trogoderma granarium (Coleoptera: Dermestidae). J Stored Prod Res 47:185–190. doi:10.1016/j.jspr.2010.11.003

    Article  CAS  Google Scholar 

  • Opitz SEW, Boevé J-L, Nagy ZT, Sonet G, Koch F, Müller C (2012) Host shifts from Lamiales to Brassicaceae in the sawfly genus Athalia. PLoS One 7:e33649–e33649. doi:10.1371/journal.pone.0033649

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Opitz SEW, Jensen SR, Müller C (2010) Sequestration of glucosinolates and iridoid glucosides in sawfly species of the genus Athalia and their role in defense against ants. J Chem Ecol 36:148–157. doi:10.1007/s10886-010-9740-3

    Article  CAS  PubMed  Google Scholar 

  • Pelletier Y, Pompon J, Dexter P, Quiring D (2010) Biological performance of Myzus persicae and Macrosiphum euphorbiae (Homoptera: Aphididae) on seven wild Solanum species. Ann Appl Biol 156:329–336. doi:10.1111/j.1744-7348.2010.00389.x

    Article  Google Scholar 

  • Pianzzola MJ, Zarantonelli L, González G, Franco Fraguas L, Vázquez A (2005) Genetic, phytochemical and biochemical analyses as tools for biodiversity evaluation of wild accessions of Solanum commersonii. Biochem Syst Ecol 33:67–78

    Article  CAS  Google Scholar 

  • Poelman EH, Galiart RJFH, Raaijmakers CE, Van Loon JJA, Van Dam NM (2008) Performance of specialist and generalist herbivores feeding on cabbage cultivars is not explained by glucosinolate profiles. Entomol Exp Appl 127(3):218–228. doi:10.1111/j.1570-7458.2008.00700.x

    Article  Google Scholar 

  • Pompon J, Quiring D, Giordanengo P, Pelletier Y (2010) Characterization of Solanum chomatophilum resistance to 2 aphid potato pests, Macrosiphum euphorbiae (Thomas) and Myzus persicae (Sulzer). Crop Prot 29:891–897. doi:10.1016/j.cropro.2010.03.005

    Article  Google Scholar 

  • Prieto JM, Schaffner U, Barker A, Braca A, Siciliano T, Boevé J-L (2007) Sequestration of furostanol saponins by Monophadnus sawfly larvae. J Chem Ecol 33(3):513–524. doi:10.1007/s10886-006-9232-7

    Article  CAS  PubMed  Google Scholar 

  • Rangarajan A, Miller AR, Veilleux RE (2000) Leptine glycoalkaloids reduce feeding by Colorado potato beetle in diploid Solanum sp. hybrids. J Am Soc Hortic Sci 125:689–693

    CAS  Google Scholar 

  • Roddick JG, Rijnenberg AL, Weissenberg M (1992) Alterations to the permeability of liposome membranes by the solasodine-based glycoalkaloids solasonine and solamargine. Phytochemistry 31:1951–1954. doi:10.1016/0031-9422(92)80339-g

    Article  CAS  Google Scholar 

  • Rosenthal JP, Dirzo R (1997) Efects of life history, domestication and agronomic selection on plant defence against insects: evidence from maizes and wild relatives. Evol Ecol 11:337–355

    Article  Google Scholar 

  • Schaffner U, Boevé J-L (1996) Sequestration of plant alkaloids by the sawfly Rhadinoceraea nodicornis: ecological relevance for different life stages and occurrence among related species. Entomol Exp Appl 80:283–285

    Article  CAS  Google Scholar 

  • Schaffner U, Boevé J-L, Gfeller H, Schlunegger UP (1994) Sequestration of Veratrum alkaloids by specialist Rhadinoceraea nodicornis Konow (Hymenoptera, Tenthredinidae) and its ecoethological implications. J Chem Ecol 20(12):3233–3250

    Article  CAS  PubMed  Google Scholar 

  • Schmidt S, McKinnon AE, Moore CJ, Walter GH (2010) Chemical detoxification vs mechanical removal of host plant toxins in Eucalyptus feeding sawfly larvae (Hymenoptera: Pergidae). J Insect Physiol 56:1770–1776. doi:10.1016/j.jinsphys.2010.07.006

    Article  CAS  PubMed  Google Scholar 

  • Schmidt S, Smith DR (2006) An annotated systematic world catalogue of the Pergidae (Hymenoptera). Contributions of the American Entomological Institute 34:1–207

    Google Scholar 

  • Schmidt S, Walter GH, Moore CJ (2000) Host plant adaptations in myrtaceous-feeding pergid sawflies: essential oils and the morphology and behaviour of Pergagrapta larvae (Hymenoptera, Symphyta, Pergidae). Biol J Linn Soc 70:15–26. doi:10.1111/j.1095-8312.2000.tb00198.x

    Google Scholar 

  • Schoonhoven LM, van Loon JJA, Dicke M (2005) Insect-plant biology, 2nd edn. Oxford University Press, USA

    Google Scholar 

  • Schowalter TD (2006) Insect ecology: An ecosystem approach, 2nd edn. Press, Academic

    Google Scholar 

  • Small E (1996) Adaptations to herbivory in alfalfa (Medicago sativa). Can J Bot 74:807–822. doi:10.1139/b96-102

    Article  Google Scholar 

  • Staba JE (1969) Plant tissue culture as a technique for the phytochemist. Recent Adv Phytochem 8:80

    Google Scholar 

  • Tait NN (1962) The anatomy of the sawfly Perga affinis affinis Kirby (Hymenoptera: Symphyta). Aust J Zool 10:652–683

    Article  Google Scholar 

  • Tingey WM (1984) Glycoalcaloids as pest resistance factors. Am Potato J 61:157–167

    Article  CAS  Google Scholar 

  • Tingey WM, Sinden SL (1982) Glandular pubescence, glycoalkaloid composition, and resistance to the green peach aphid, potato leafhopper, and potato fleabeetle in Solanum berthaultii. Am Potato J 59:95–106

    Article  CAS  Google Scholar 

  • van Gelder WMJ, Vinket JH, Scheffer JJC (1988) Steroidal glycoalkaloids in tubers and leaves of Solanum species used in potato breeding. Euphytica 158:147–158

    Google Scholar 

  • Vázquez A, González G, Ferreira F, Moyna P, Kenne L (1997) Glycoalkaloids of Solanum commersonii Dun. ex Poir. Euphytica 95:195–201

    Article  Google Scholar 

  • Wise IL, Lamb RJ, Smith MAH (2001) Domestication of wheats (Gramineae) and their susceptibility to herbivory by Sitodiplosis mosellana (Diptera: Cecidomyiidae). Can Entomol 133:255–267

    Article  Google Scholar 

  • Yencho GC, Kowalski SP, Kennedy GG, Sanford LL (2000) Segregation of leptine glycoalkaloids and resistance to Colorado potato beetle (Leptinotarsa decemlineata (Say)) in F2 Solanum tuberosum (4x) x S. chacoense (4x) potato progenies. Amer J Potato Res 77(3):167–178

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge technical assistance by personnel of the National Institute for Agricultural Research (INIA) for processing germplasm material, and for field and greenhouse support. Glycoalkaloid standards were kindly provided by Prof. Fernando Ferreira of Universidad de la República, Uruguay. Dr. Nora Cabrera of Universidad Nacional de la Plata, Argentina, identified Epitrix argentinensis. Prof. Jeremy McNeil of Western University, Canada, provided helpful suggestions for the manuscript. Mass spectrometry facilities were funded by the European Union Grant EU-URY 2003–5906. The National Agency for Research and Innovation (ANII) granted fellowships to P. Altesor and A. García. Support by the graduate program in Biological Sciences PEDECIBA is also acknowledged.

While in proof, Tequus sp. was identified as Tequus schrottkyi (Knw.), by Dr. Stefan Schmidt, Curator for Hymenoptera, Zoologische Staatssammlung, Munich, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés González.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altesor, P., García, Á., Font, E. et al. Glycoalkaloids of Wild and Cultivated Solanum: Effects on Specialist and Generalist Insect Herbivores. J Chem Ecol 40, 599–608 (2014). https://doi.org/10.1007/s10886-014-0447-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-014-0447-8

Keywords

Navigation