Skip to main content
Log in

Flavonoids: Their Structure, Biosynthesis and Role in the Rhizosphere, Including Allelopathy

  • Review Article
  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Flavonoids are biologically active low molecular weight secondary metabolites that are produced by plants, with over 10,000 structural variants now reported. Due to their physical and biochemical properties, they interact with many diverse targets in subcellular locations to elicit various activities in microbes, plants, and animals. In plants, flavonoids play important roles in transport of auxin, root and shoot development, pollination, modulation of reactive oxygen species, and signalling of symbiotic bacteria in the legume Rhizobium symbiosis. In addition, they possess antibacterial, antifungal, antiviral, and anticancer activities. In the plant, flavonoids are transported within and between plant tissues and cells, and are specifically released into the rhizosphere by roots where they are involved in plant/plant interactions or allelopathy. Released by root exudation or tissue degradation over time, both aglycones and glycosides of flavonoids are found in soil solutions and root exudates. Although the relative role of flavonoids in allelopathic interference has been less well-characterized than that of some secondary metabolites, we present classic examples of their involvement in autotoxicity and allelopathy. We also describe their activity and fate in the soil rhizosphere in selected examples involving pasture legumes, cereal crops, and ferns. Potential research directions for further elucidation of the specific role of flavonoids in soil rhizosphere interactions are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5 and 6

Similar content being viewed by others

References

  • Agati, G., Azzarello, E., Pollastri, S., and Tattini, M. 2012. Flavonoids as antioxidants in plants: Location and functional significance. Plant. Sci. 196:67–76.

    Article  PubMed  CAS  Google Scholar 

  • Aguilar, J. M. M., Ashby, A. M., Richards, A. J. M., Loake, G. J., Watson, M. D., and Shaw, C. H. 1988. Chemotaxis of Rhizobium legminosarum biovar phaseoli towards flavonoid inducers of the symbiotic nodulation genes. J. Gen. Microbiol. 134:2741–2746.

    Google Scholar 

  • Akiyama, K., Matsuoka, H., and Hayashi, H. 2002. Isolation and identification of a phosphate deficiency-induced C-glycosylflavonoid that stimulates arbuscular mycorrhiza formation in melon roots. Mol. Plant-Microbe. Interact. 15:334–340.

    Article  PubMed  CAS  Google Scholar 

  • Akiyama, K., Tanigawa, F., Kashihara, T., and Hayashi, H. 2010. Lupin pyranoisoflavones inhibiting hyphal development in arbuscular mycorrhizal fungi. Phytochemistry 71:1865–1871.

    Article  PubMed  CAS  Google Scholar 

  • Armero, J., Requejo, R., Jorrin, J., Lopez-Valbuena, R., and Tena, M. 2001. Release of phytoalexins and related isoflavonoids from intact chickpea seedlings elicited with reduced glutathione at root level. Plant. Physiol. Biochem. 39:785–795.

    Article  CAS  Google Scholar 

  • Badri, D. V., Chaparro, J. M., Manter, D. K., Martinoia, E., and Vivanco, J. M. 2012. Influence of ATP-binding cassette transporters in root exudation of phytoalexins, signals, and in disease resistance. Front. Plant. Sci. 3:149.

    Article  PubMed  Google Scholar 

  • Badri, D. V., Loyola-Vargas, V. M., Broeckling, C. D., De-La-pena, C., Jasinski, M., Santelia, D., Martinoia, E., Sumner, L. W., Banta, L. M., Stermitz, F., and Vivanco, J. M. 2008. Altered profile of secondary metabolites in the root exudates of Arabidopsis ATP-binding cassette transporter mutants. Plant. Physiol. 146:762–771.

    Article  PubMed  CAS  Google Scholar 

  • Badri, D. V., Quintana, N., El Kassis, E. G., Kim, H. K., Choi, Y. H., Sugiyama, A., Verpoorte, R., Martinoia, E., Manter, D. K., and Vivanco, J. M. 2009. An ABC transporter mutation alters root exudation of phytochemicals that provoke an overhaul of natural soil microbiota. Plant Physiol 151:2006–2017.

    Article  PubMed  CAS  Google Scholar 

  • Baldridge, G. D., O’Neill, N. R., and Samac, D. A. 1998. Alfalfa (Medicago sativa L.) resistance to the root-lesion nematode, Pratylenchus penetrans: Defense-response gene mRNA and isoflavonoid phytoalexin levels in roots. Plant. Mol. Biol. 38:999–1010.

    Article  PubMed  CAS  Google Scholar 

  • Banasiak, J., Biała, W., Staszków, A., Swarcewicz, B., Kepczynska, E., Figlerowicz, M., and Jasinski, M. 2013. A Medicago truncatula ABC transporter belonging to subfamily G modulates the level of isoflavonoids. J. Exp. Bot.. doi:10.1093/jxb/ers380.

  • Barto, E. K., Weidenhamer, J. D., Cipollini, D., and Rillig, M. C. 2012. Fungal superhighways: Do common mycorrhizal networks enhance below ground communication? Trends. Plant. Sci. 17:633–637.

    Article  PubMed  CAS  Google Scholar 

  • Batish, D. R., Singh, H. P., Kohli, R. K., and Dawra, G. P. 2006. Potential of allelopathy and allelochemicals for weed management, pp. 209–256, in H. P. Singh, D. R. Batish, and R. K. Kohli (eds.), Handbook of Sustainable Weed Management. Food Products Press, Binghamton.

    Google Scholar 

  • Bayliss, C., Canny, M. J., and McCully, M. E. 1997. Retention in situ and spectral analysis of fluorescent vacuole components in sections of plant tissue. Biotech. Histochem. 72:123–128.

    Article  PubMed  CAS  Google Scholar 

  • Berhow, M. A. and Vaughn, S. R. 1999. Higher Plant Flavonoids: Biosynthesis and Chemical Ecology, pp. 423–438, in K. M. M. D. Inderjit and C. L. Foy (eds.), Principals and Practices in Plant Ecology- Allelochemical Interactions. CRC Press, Boca Raton.

    Google Scholar 

  • Bertholdsson, N.-O. 2004. Variation in allelopathic activity over 100 years of barley selection and breeding. Weed. Res. 44:78–86.

    Article  Google Scholar 

  • Bertholdsson, N.-O. 2005. Early vigour and allelopathy - Two useful traits for enhanced barley and wheat competitiveness against weeds. Weed. Res. 45:94–102.

    Article  Google Scholar 

  • Blount, J. W., Dixon, R. A., and Paiva, N. L. 1992. Stress responses in alfalfa (Medicago sativa L).16. Antifungal activity of medicarpin and its biosynthetic precursors—implications for the genetic manipulation of stress metabolites. Physiol. Mol. Plant Pathol. 41:333–349.

    Article  CAS  Google Scholar 

  • Brown, D. E., Rashotte, A. M., Murphy, A. S., Normanly, J., Tague, B. W., Peer, W. A., Taiz, L., and Muday, G. K. 2001. Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol. 126:524–535.

    Article  PubMed  CAS  Google Scholar 

  • Buer, C. S. and Djordjevic, M. A. 2009. Architectural phenotypes in the transparent testa mutants of Arabidopsis thaliana. J. Exp. Bot. 60:751–763.

    Article  PubMed  CAS  Google Scholar 

  • Buer, C. S., Imin, N., and Djordjevic, M. A. 2010. Flavonoids: New roles for old molecules. J. Integ.. Plant. Biol. 52:98–111.

    Article  CAS  Google Scholar 

  • Buer, C. S., Muday, G. K., and Djordjevic, M. A. 2007. Flavonoids are differentially taken up and transported long distances in Arabidopsis. Plant Physiol. 145:478–490.

    Article  PubMed  CAS  Google Scholar 

  • Carlsen, S. C. K., Pedersen, H. A., Spliid, N. H., and Fomsgaard, I. S. 2012. Fate in soil of flavonoids released from white clover (Trifolium repens L.). Appl. Environ. Soil. Sc 2012:1–10.

    Article  CAS  Google Scholar 

  • Cesco, S., Neumann, G., Tomasi, N., Pinton, R., and Weisskopf, L. 2010. Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant Soil 329:1–25.

    Article  CAS  Google Scholar 

  • Chung, I. M. and Miller, D. A. 1995. Differences in autotoxicity among seven alfalfa cultivars. Agron. J. 87:596–600.

    Article  Google Scholar 

  • Cooper-Driver, G. 1980. The role of flavonoids and related compounds in fern systematics. Bull. Torrey. Botan. Club. 107:116–127.

    Article  CAS  Google Scholar 

  • Cooper, JE. 2004 Multiple responses of rhizobia to flavonoids during legume root infection, pp 1–62 in: Callow JA (ed) Advances in Botanical Research Incorporating Advances in Plant Pathology, Vol 41.

  • Coronado, C., Zuanazzi, J. A. S., Sallaud, C., Quirion, J. C., Esnault, R., Husson, H. P., Kondorosi, A., and Ratet, P. 1995. Medicago sativa root flavonoid production is nitrogen regulated. Plant Physiol. 108:533–542.

    PubMed  CAS  Google Scholar 

  • Cosgrove, D. and Undersander, D. 2003. pp. 1–2, Seeding Alfalfa Fields Back into Alfalfa. Extension Publication. Focus on Forage. University of Wisconsin, Madison.

    Google Scholar 

  • Curir, P., Dolci, M., and Galeotti, F. 2005. A phytoalexin-like flavonol involved in the carnation (Dianthus caryophyllus)-Fusarium oxysporum f Sp dianthi pathosystem. J. Phytopathol. 153:65–67.

    Article  CAS  Google Scholar 

  • Cushnie, T. P. T. and Lamb, A. J. 2011. Recent advances in understanding the antibacterial properties of flavonoids. Int. J. Antimicrob. Agents 38:99–107.

    Article  PubMed  CAS  Google Scholar 

  • Cutler, S. J., Varela, R. M., Palma, M., Macias, F. A., and Cutler, H. G. 2007. Isolation, Structural Elucidation and Synthesis Of Biologically Active Allelochemicals for Potential Use as Pharmaceuticals, pp. 1–398, in Y. Fujii and S. Hiradate (eds.), Allelopathy: New Concepts and Methodology. National Institute for Agro-environmental Sciences, Tsukuba.

    Google Scholar 

  • Dakora, F. D., Joseph, C. M., Phillips, D. A .(1993) Rhizobium meliloti alters flavonoid composition of alfalfa root exudates, p. 335 in: Palacios Rea (ed) New Horizons in Nitrogen Fixation. Kluwer Academic Publishers

  • Davies, K. M., Albert, N. W., and Schwinn, K. E. 2012. From landing lights to mimicry: The molecular regulation of flower colouration and mechanisms for pigmentation patterning. Funct. Plant Biol. 39:619–638.

    Article  CAS  Google Scholar 

  • Delaux, P. M., Nanda, A. K., Mathe, C., Sejalon-Delmas, N., and Dunand, C. 2012. Molecular and biochemical aspects of plant terrestrialization. Perspect. Plant. Ecol. Evolu. Systemat. 14:49–59.

    Article  Google Scholar 

  • Dharmatilake, A. J. and Bauer, W. D. 1992. Chemotaxis of Rhizobium meliloti towards nodulation geneinducing compounds from alfalfa roots. Appl. Environ. Microbiol. 58:1153–1158.

    PubMed  CAS  Google Scholar 

  • Dixon, R. A. and Paiva, N. L. 1995. Stress-induced phenylpropanoid metabolism. Plant. Cell. 7:1085–1097.

    PubMed  CAS  Google Scholar 

  • Dixon, R. A. and Steele, C. L. 1999. Flavonoids and isoflavonoids—a gold mine for metabolic engineering. Trends Plant Sci. 4:394–400.

    Article  PubMed  Google Scholar 

  • Djordjevic, M. A., Redmond, J. W., Batley, M., and Rolfe, B. G. 1987. Clovers secrete specific phenolic compounds which either stimulate or repress nod gene expression in Rhizobium trifolii. EMBO J. 6:1173–1179.

    PubMed  CAS  Google Scholar 

  • Duke, S.O., Bajsa, J., and Pan, Z. 2013. Omics methods for probing the mode of action of natural and synthetic phytotoxins. J. Chem. Ecol. 39:333–348.

    Google Scholar 

  • Edwards, R., Mizen, T., and Cook, R. 1995. Isoflavonoid conjugate accumulation in the roots of lucerne (Medicago sativa) seedlings following infection by the stem nematode (Ditylenchus dipsaci). Nematologica 41:51–66.

    Article  Google Scholar 

  • Erlejman, A. G., Verstraeten, S. V., Fraga, C. G., and Oteiza, P. I. 2004. The interaction of flavonoids with membranes: Potential determinant of flavonoid antioxidant effects. Free Radic. Res. 38:1311–1320.

    Article  PubMed  CAS  Google Scholar 

  • Fang, C., Zhuang, Y., Xu, T., Li, Y., Li, Yue, and Lin, W. 2013. Changes in rice allelopathy and rhizosphere microflora by inhibiting rice phenylalanine amonia-lyase gene expression. J. Chem. Ecol. 39:204–212.

    Google Scholar 

  • Ferrer, J. L., Austin, M. B., Stewart, C., and Noe, J. P. 2008. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant. Physiol. Biochem. 46:356–370.

    Article  PubMed  CAS  Google Scholar 

  • Feucht, W., Treutter, D., and Polster, J. 2012. Flavanols in nuclei of tree species: Facts and possible functions. Trees-Struct Funct 26:1413–1425.

    Article  CAS  Google Scholar 

  • Furuya, M., Garlston, A. W., and Stowe, B. B. 1962. Isolation from peas of co-factors and inhibitors of indolyl-3-acetic acid oxidase. Nature 193:456–457.

    Article  PubMed  CAS  Google Scholar 

  • Gealy, D., Moldenhauer, K., and Duke, S. (2013). Root distribution and potential interactions between allelopathic rice, sprangletop (Leptochloa spp.), and barnyardgrass (Echinochloa crus-galli) based on 13C isotope discrimination analysis. J. Chem. Ecol. 39:186–203.

    Google Scholar 

  • Gressel, J., Hanafi, A., Head, G., Marasas, W., Obilana, B., Ochanda, J., Souissi, T., and Tzotzos, G. 2004. Major heretofore intractable biotic constraints to African food security that may be amenable to novel biotechnological solutions. Crop Protect. 23:661–689.

    Article  Google Scholar 

  • Hai, Z., Jin-Ming, G., Wei-Tao, L., Jing-Cheng, T., Xing-Chang, Z., Zhen-Guo, J., Yao-Ping, X., and Ming-An, S. 2008. Allelopathic substances from walnut (Juglans regia L.). Allelopathy J 21:425–432.

    Google Scholar 

  • Hancock, D. W. 2005. Autotoxicity in Alfalfa (Medicago sativa L.): Implications for Crop Production. University of Kentucky, Lexington KY, pp 1–17

  • Harborne, J. B. 1973. Phytochemical Methods. Chatman and Hall, London.

    Google Scholar 

  • Harrison, M. J. 2005. Signaling in the arbuscular mycorrhizal symbiosis. Annu. Rev. Microbiol. 59:19–42.

    Google Scholar 

  • Hartwig, U. A., Joseph, C. M., and Phillips, D. A. 1991. Flavonoids released naturally from alfalfa seeds enhance growth rate of Rhizobium meliloti. Plant Physiol. 95:797–803.

    Article  PubMed  CAS  Google Scholar 

  • Hartwig, U. A. and Phillips, D. A. 1991. Release and modification of nod gene-inducing flavonoids from alfalfa seeds. Plant Physiol. 95:804–807.

    Article  PubMed  CAS  Google Scholar 

  • Hassan, S. and Mathesius, U. 2012. The role of flavonoids in root-rhizosphere signalling: Opportunities and challenges for improving plant-microbe interactions. J. Exp. Bot. 63:3429–3444.

    Article  PubMed  CAS  Google Scholar 

  • Hawes, M. C., Brigham, L. A., Wen, F., Woo, H. H., Zhu, Z. 1998. Function of root border cells in plant health: Pioneers in the rhizosphere. Ann. Rev. Phytopathol. 36:311–327.

    Article  CAS  Google Scholar 

  • Heath, M. C. 2000. Hypersensitive response-related death. Plant Mol. Biol. 44:321–334.

    Article  PubMed  CAS  Google Scholar 

  • Hedge, R. S. and Miller, D. A. 1992. Concentration dependency and stage of crop growth in alfalfa autotoxicity. Agron. J. 84:940–946.

    Article  Google Scholar 

  • Higgins, V. J. 1978. The effect of some pterocarpanoid phytoalexins on germ tube elongation of Stemphylium botryosum. Phytopathology 68:339–345.

    Article  CAS  Google Scholar 

  • Hodnick, W. F., Duval, D. L., and Pardini, R. S. 1994. Inhibition of mitochondrial respiration and cyanide-stimulated generation of reactive oxygen species by selected flavonoids. Biochem. Pharmacol. 47:573–580.

    Article  PubMed  CAS  Google Scholar 

  • Hodnick, W. F., Milosavljevic, E. B., Nelson, J. H., and Pardini, R. S. 1988. Electrochemistry of flavonoids—relationships between redox potentials, inhibition of mitochondrial respiration and production of oxygen radicals by flavonoids. Biochem. Pharmacol. 37:2607–2611.

    Article  PubMed  CAS  Google Scholar 

  • Hooper, A. M., Tsanuo, M. K., Chamberlain, K., Tittcomb, K., Scholes, J., Hassanali, A., Khan, Z. R., and Pickett, J. A. 2010. Isoschaftoside, a C-glycosylflavonoid from Desmodium uncinatum root exudate, is an allelochemical against the development of Striga. Phytochemistry 71:904–908.

    Article  PubMed  CAS  Google Scholar 

  • Huang, L., Song, L., Xia, X., Mao, W., Shi, K., Zhou, Y., Yu, J. 2013. Plant-soil feedbacks and soil sickness: From mechanisms to application in agriculture. J. Chem. Ecol. 39:232-242.

    Google Scholar 

  • Hutzler, P., Fischbach, R., Heller, W., Jungblut, T. P., Reuber, S., Schmitz, R., Veit, M., Weissenboeck, G., and Schnitzler, J. P. 1998. Tissue localisation of phenolic compounds in plants by confocal laser scanning microscopy. J. Exp. Bot. 49:953–965.

    CAS  Google Scholar 

  • Jacobs, M. and Rubery, P. H. 1988. Naturally occuring auxin transport regulators. Science 241:346–349.

    Article  PubMed  CAS  Google Scholar 

  • Jennings, J. A. 2001. Understanding Autotoxicity in Alfalfa. Wisconsin Forage Council: 2001 Proceedings. University of Wisconsin, Madison WI.

  • Jennings, J. A. and Nelson, C. J. 2002. Zone of autotoxic influence around established alfalfa plants. Agron. J. 94:1104–1111.

    Article  Google Scholar 

  • Jia, Z. H., Zou, B. H., Wang, X. M., Qiu, J. A., Ma, H., Gou, Z. H., Song, S. S., and Dong, H. S. 2010. Quercetin-induced H(2)O(2) mediates the pathogen resistance against Pseudomonas syringae pv. Tomato DC3000 in Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 396:522–527.

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen, K., Rasmussen, A. V., Morant, M., Nielsen, A. H., Bjarnholt, N., Zagrobelny, M., Bak, S., and Moller, B. L. 2005. Metabolon formation and metabolic channeling in the biosynthesis of plant natural products. Curr. Opin. Plant Biol. 8:280–291.

    Article  PubMed  CAS  Google Scholar 

  • Juszczuk, I. M., Wiktorowska, A., Malusa, E., and Rychter, A. M. 2004. Changes in the concentration of phenolic compounds and exudation induced by phosphate deficiency in bean plants (Phaseolus vulgaris L.). Plant Soil 267:41–49.

    Article  CAS  Google Scholar 

  • Kato-Noguchi, H., Ino, T., Sata, N., and Yamamura, S. 2002. Isolation and identification of a potent allelopathic substance in rice root exudates. Physiol. Plant. 115:401–405.

    Article  PubMed  CAS  Google Scholar 

  • Kato-Noguchi, H. and Peters, R. (2013). The role of momilactones in rice allelopathy, J. Chem. Ecology. 39:175–185.

    Google Scholar 

  • Khan, Z. R., Midega, C. A. O., Bruce, T. J. A., Hooper, A. M., and Pickett, J. A. 2010. Exploiting phytochemicals for developing a ’push-pull’ crop protection strategy for cereal farmers in Africa. J. Exp. Bot. 61:4185–4196.

    Article  PubMed  CAS  Google Scholar 

  • Khan, Z. R., Pickett, J. A., Wadhams, L. J., Hassanali, A., and Midega, C. A. O. 2006. Combined control of Striga hermonthica and stemborers by maize-Desmodium spp. intercrops. Crop Protect 25:989–995.

    Article  Google Scholar 

  • Klein, R. R. and Miller, D. A. 1980. Allelopathy and its role in agriculture. Commun. Soil Sci. Plant Anal. 11:43–56.

    Article  Google Scholar 

  • Kong, C. H., Xu, X., Zhou, B., Hu, F., Zhang, C., and Zhang, M. 2004. Two compounds from allelopathic rice accession and their inhibitory activity on weeds and fungal pathogens. Phytochemistry 65:1123–1128.

    Article  PubMed  CAS  Google Scholar 

  • Kong, C. H., Zhao, H., Xu, H., Wang, P., and Gu, Y. 2007. Activity and allelopathy of soil of flavone O-glycosides from rice. J. Agric. Food Chem. 55:6007–6012.

    Article  PubMed  CAS  Google Scholar 

  • Kremer, R. J. and Ben-Hammouda, M. 2009. Allelopathic Plants. 19. Barley (Hordeum vulgare L.). Allelopathy J 24:225–241.

    Google Scholar 

  • Levizou, E., Karageorgou, P. K., Petropoulou, G., Grammatikopoulos, G., and Manetas, Y. 2004. Induction of ageotropic response in lettuce radical growth by epicuticular flavonoid aglycones of Dittrichia viscosa. Biol. Plant. 48:305–307.

    Article  CAS  Google Scholar 

  • Lovett, J. V. and Hoult, A. H. C. (eds.) 1995. Allelopathy and Self-Defense in Barley. American Chemical Society, Washington DC.

    Google Scholar 

  • Makoi, J. H. J. R. and Ndakidemi, P. A. 2007. Biological, ecological and agronomic significance of plant phenolic compounds in rhizosphere of the symbiotic legumes. Afr. J. Biotechnol. 6:1358–1368.

    CAS  Google Scholar 

  • Mandal, S. M., Chakraborty, D., and Dey, S. 2010. Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant. Signal. Behav 5:359–368.

    Article  PubMed  CAS  Google Scholar 

  • Marais, J. P. J., Deavours, B., Dixon, R. A., and Ferreira, D. 2007. The Stereochemistry of Flavonoids, pp. 1–35, in E. Grotewold (ed.), The Science of Flavonoids. Springer Press, New York.

    Google Scholar 

  • Masaoka, Y., Kojima, M., Sugihara, S., Yoshihara, T., Koshino, M., and Ichihara, A. 1993. Dissolution of ferric phosphates by alfalfa (Medicago sativa L.) root exudates. Plant Soil 155:75–78.

    Article  Google Scholar 

  • Mathesius, U. 2001. Flavonoids induced in cells undergoing nodule organogenesis in white clover are regulators of auxin breakdown by peroxidase. J. Exp. Bot. 52:419–426.

    Article  PubMed  CAS  Google Scholar 

  • Mathesius, U., Bayliss, C., Weinman, J. J., Schlaman, H. R. M., Spaink, H. P., Rolfe, B. G., McCully, M. E., and Djordjevic, M. A. 1998. Flavonoids synthesized in cortical cells during nodule initiation are early developmental markers in white clover. Mol. Plant-Microbe. Interact. 11:1223–1232.

    Article  CAS  Google Scholar 

  • Miller, D. 1996. Allelopathy in forage crop systems. Agron. J. 88:854–859.

    Article  Google Scholar 

  • Mohney, B. K., Matz, T., Lamoreaux, J., Wilcox, D. S., Gimsing, A. L., Mayer, P., and Weidenhamer, J. D. 2009. In situ silicone tube microextraction: A new method for undisturbed sampling of root-exuded thiophenes from marigold (Tagetes erecta L.) in soil. J. Chem. Ecol. 35:1279–1287.

    Article  PubMed  CAS  Google Scholar 

  • Morandi, D., le Signor, C., Gianinazzi-Pearson, V., and Duc, G. 2009. A Medicago truncatula mutant hyper-responsive to mycorrhiza and defective for nodulation. Mycorrhiza 19:435–441.

    Article  PubMed  Google Scholar 

  • Mwaja, V., Masiunas, J. B., and Weston, L. A. 1995. Effects of fertility on biomass, phytotoxicity and allelochemical content of cereal rye. J. Chem. Ecol. 21:81–96.

    Article  CAS  Google Scholar 

  • Naoumkina, M. and Dixon, R. A. 2008. Subcellular localization of flavonid natural products: A signalling function? Plant. Signal. Behav. 3:573–575.

    Article  Google Scholar 

  • Naoumkina, M. A., Zhao, Q. A., Gallego-Giraldo, L., Dai, X. B., Zhao, P. X., and Dixon, R. A. 2010. Genome-wide analysis of phenylpropanoid defence pathways. Mol. Plant. Pathol. 11:829–846.

    PubMed  CAS  Google Scholar 

  • Oleszek, W. and Jurzysta, M. 1987. The allelopathic potential of alfalfa root mediacagenic acid glycosides and their fate in soil environments. Plant Soil 98:67–80.

    Article  CAS  Google Scholar 

  • Peck, M. C., Fisher, R. F., and Long, S. R. 2006. Diverse flavonoids stimulate NodD1 binding to nod gene promoters in Sinorhizobium meliloti. J. Bacteriol. 188:5417–5427.

    Article  PubMed  CAS  Google Scholar 

  • Peer, W. A., Brown, D. E., Tague, B. W., Muday, G. K., Taiz, L., and Murphy, A. S. 2001. Flavonoid accumulation patterns of transparent testa mutants of Arabidopsis. Plant Physiol. 126:536–548.

    Article  PubMed  CAS  Google Scholar 

  • Peer, W. A. and Murphy, A. S. 2007. Flavonoids and auxin transport: Modulators or regulators? Trends Plant Sci. 12:556–563.

    Article  PubMed  CAS  Google Scholar 

  • Peters, N. K. and Long, S. R. 1988. Alfalfa root exudates and compounds which promote or inhibit induction of Rhizobium meliloti nodulation genes. Plant Physiol. 88:396–400.

    Article  PubMed  CAS  Google Scholar 

  • Plaper, A., Golob, M., Hafner, I., Oblak, M., Solmajer, T., and Jerala, R. 2003. Characterization of quercetin binding site on DNA gyrase. Biochem. Biophys. Res. Commun. 306:530–536.

    Article  PubMed  CAS  Google Scholar 

  • Pollastri, S. and Tattini, M. 2011. Flavonols: Old compounds for old roles. Ann. Bot. 108:1225–1233.

    Article  PubMed  CAS  Google Scholar 

  • Pueppke, S. G. and Vanetten, H. D. 1974. Pisatin accumulation and lesion development in peas infected with Aphanomyces euteiches. Fusarium solani f. sp. pisi or Rhizoctonia solani. Phytopathology 64:1433–1440.

    Article  CAS  Google Scholar 

  • Putnam, A. R. and Defrank, J. 1983. Use of allelopathic cover crops to inhibit weeds. Crop Protect. 2:173–182.

    Article  Google Scholar 

  • Rao, A. S. 1990. Root flavonoids. Bot. Rev. 56:1–84.

    Article  Google Scholar 

  • Rao, J. R. and Cooper, J. E. 1994. Rhizobia catabolize nod gene-inducing flavonoids via C-ring fission mechanisms. J. Bacteriol. 176:5409–5413.

    PubMed  CAS  Google Scholar 

  • Rao, J. R. and Cooper, J. E. 1995. Soybean nodulating rhizobia modify nod gene inducers daidzein and genistein to yield aromatic products that can influence gene-inducing activity. Mol. Plant-Microbe Interact. 8:855–862.

    Article  CAS  Google Scholar 

  • Redmond, J. R., Batley, M., Djordjevic, M. A., Innes, R. W., Keumpel, P. L., and Rolfe, B. G. 1986. Flavones induce expression of nodulation genes in Rhizobium. Nature 323:632–635.

    Article  CAS  Google Scholar 

  • Rice, E. L. (ed.) 1984. Allelopathy. Academic, Orlando.

    Google Scholar 

  • Saslowsky, D. E., Warek, U., and Winkel, B. S. J. 2005. Nuclear localization of flavonoid enzymes in Arabidopsis. J. Biol. Chem. 280:23735–23740.

    Article  PubMed  CAS  Google Scholar 

  • Scervino, J. M., Ponce, M. A., Erra-Bassells, R., Bompadre, M. J., Vierheilig, H., Ocampo, J. A., and Godeas, A. 2006. Glycosidation of apigenin results in a loss of its activity on different growth parameters of arbuscular mycorrhizal fungi from the genus Glomus and Gigaspora. Soil Biol. Biochem. 38:2919–2922.

    Article  CAS  Google Scholar 

  • Scervino, J. M., Ponce, M. A., Erra-Bassells, R., Bornpadre, J., Vierheilig, H., Ocampo, J. A., and Godeas, A. 2007. The effect of flavones and flavonols on colonization of tomato plants by arbuscular mycorrhizal fungi of the genera Gigaspora and Glomus. Can. J. Microbiol. 53:702–709.

    Article  PubMed  CAS  Google Scholar 

  • Scervino, J. M., Ponce, M. A., Erra-Bassells, R., Vierheilig, H., Ocampo, J. A., and Godeas, A. 2005a. Flavonoids exclusively present in mycorrhizal roots of white clover exhibit a different effect on arbuscular mycorrhizal fungi than flavonoids exclusively present in non-mycorrhizal roots of white clover. J. Plant. Interact. 1:15–22.

    Article  CAS  Google Scholar 

  • Scervino, J. M., Ponce, M. A., Erra-Bassells, R., Vierheilig, H., Ocampo, J. A., and Godeas, A. 2005b. Flavonoids exhibit fungal species and genus specific effects on the presymbiotic growth of Gigaspora and Glomus. Mycol. Res. 109:789–794.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, P. E., Broughton, W. J., and Werner, D. 1994. Nod-factors of Bradyrhizobium japonicum and Rhizobium sp. NGR234 induce flavonoid accumulation in soybean root exudate. Molec. Plant. Microbe. Interact. 7:384–390.

    Article  CAS  Google Scholar 

  • Shaw, L. J. and Hooker, J. E. 2008. The fate and toxicity of the flavonoids naringenin and formononetin in soil. Soil Biol. Biochem. 40:528–536.

    Article  CAS  Google Scholar 

  • Shaw, L. J., Morris, P., Hooker, J. E. 2006. Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Env. Microbiol. 8:1867–1880.

    Article  CAS  Google Scholar 

  • Shulz, M., Marocco, A., Tabaglio, V., and Macias, F.A. 2013. Benzoxazinoids in rye allelopathy—From discovery to application in sustainable weed control and organic farming. J. Chem. Ecol. 39:154–174.

    Google Scholar 

  • Siqueira, J. O., Safir, G. R., and Nair, M. G. 1991. Stimulation of vesicular-arbuscular mycorrhizae formation and growth of white clover by flavonoid compounds. New Phytol. 118:87–93.

    Article  CAS  Google Scholar 

  • Soto-Vaca, A., Gutierrez, A., Losso, J. N., Xu, Z. M., and Finley, J. W. 2012. Evolution of phenolic compounds from color and flavor problems to health benefits. J. Agric. Food Chem. 60:6658–6677.

    Article  CAS  Google Scholar 

  • Sosa, T., Valares, C., Alias, J. C., and Lobon, N. C. 2010. Persistence of flavonoids in Cictus landanifer soils. Plant Soil 337:51–63.

    Article  CAS  Google Scholar 

  • Star, A. E. 1980. Frond exudate flavonoids as allelopathic agents in Pityrogramma. Bull. Torrey Botan. Club 107:146–153.

    Article  CAS  Google Scholar 

  • Steinkellner, S., Lendzemo, V., Langer, I., Schweiger, P., Khaosaad, T., Toussaint, J.-P., and Vierheilig, H. 2007. Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules 12:1290–1306.

    Article  PubMed  CAS  Google Scholar 

  • Stenlid, G. 1963. The effects of flavonoid compounds on oxidative phosphorylation and on the enzymatic destruction of indoleacetic acid. Physiol. Plant. 16:110–121.

    Article  CAS  Google Scholar 

  • Stenlid, G. 1968. On the physiological effects of phloridzin, phloretin and some related substances upon higher plants. Physiol. Plant. 21:882–894.

    Article  CAS  Google Scholar 

  • Stenlid, G. 1976. Effects of flavonoids on the polar transport of auxins. Physiol. Plant. 38:262–266.

    Article  CAS  Google Scholar 

  • Subramanian, S., Graham, M. Y., Yu, O., and Graham, T. L. 2005. RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae. Plant Physiol. 137:1345–1353.

    Article  PubMed  CAS  Google Scholar 

  • Subramanian, S., Stacey, G., and Yu, O. 2006. Endogenous isoflavones are essential for the establishment of symbiosis between soybean and Bradyrhizobium japonicum. Plant J. 48:261–273.

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama, A., Shitan, N., and Yazaki, K. 2007. Involvement of a soybean ATP-binding cassette—Type transporter in the secretion of genistein, a signal flavonoid in legume-Rhizobium Symbiosis(1). Plant Physiol. 144:2000–2008.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, L. P. and Grotewold, E. 2005. Flavonoids as developmental regulators. Curr. Opin. Plant Biol. 8:317–323.

    Article  PubMed  CAS  Google Scholar 

  • Tesar, M. B. 1993. Delayed seeding of alfalfa avoids autotoxicity after plowing or glyphosate treatment of established stands. Agron. J. 85:256–263.

    Article  CAS  Google Scholar 

  • Tsai, S. M. and Phillips, D. A. 1991. Flavonoids released naturally from alfalfa promote development of symbiotic Glomus spores in vitro. Appl. Environ. Microbiol. 57:1485–1488.

    PubMed  CAS  Google Scholar 

  • Tsuzuki, E., Miura, M., Sakaki, N., and Yoshino, T. 1999. Study on the control of weeds by using higher plants. Rep. Kyushu Branch Crop Sci. Soc. Japan 65:39–40.

    Google Scholar 

  • Wasson, A. P., Pellerone, F. I., and Mathesius, U. 2006. Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell 18:1617–1629.

    Article  PubMed  CAS  Google Scholar 

  • Weidenhamer, J. D., Boes, P. D., and Wilcox, D. S. 2009. Solid-phase root zone extraction (SPRE): A new methodology for measurement of allelochemical dynamics in soil. Plant Soil 322:177–186.

    Article  CAS  Google Scholar 

  • Weston, L. A. 1996. Utilization of allelopathy for weed management in agroecosystems. Agron. J. 88:860–866.

    Article  Google Scholar 

  • Weston, L. A. 2005. History and current trends in the use of allelopathy for weed management. HortTechnology 15:529–534.

    Google Scholar 

  • Weston, L., Alsaadawi, I.S., and Baerson, S.C. 2013. Sorghum allelopathy—From ecosystem to molecule. J. Chem. Ecol. 39:142–153.

    Google Scholar 

  • Weston, L. A. and Duke, S. O. 2003. Weed and crop allelopathy. Crit. Rev. Plant Sci. 22:367–389.

    Article  CAS  Google Scholar 

  • Williams, C. A. and Grayer, R. J. 2004. Anthocyanins and other flavonoids. Nat. Prod. Rep. 21:539–573.

    Article  PubMed  CAS  Google Scholar 

  • Winkel-Shirley, B. 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 126:485–493.

    Article  PubMed  CAS  Google Scholar 

  • Winkel, B. S. J. 2004. Metabolic channeling in plants. Annu. Rev. Plant Biol. 55:85–107.

    Article  PubMed  CAS  Google Scholar 

  • Worthington, M. and Reberg-Horton, S. C. 2013. Breeding cereal crops for enhanced weed suppression: Optimizing allelopathy and competitive ability. J. Chem. Ecol. 39:213–231.

    Google Scholar 

  • Wuyts, N., Swennen, R., and de Waele, D. 2006. Effects of plant phenylpropanoid pathway products and selected terpenoids and alkaloids on the behaviour of the plant-parasitic nematodes Radopholus similis, Pratylenchus penetrans and Meloidogyne incognita. Nematology 8:89–101.

    Article  CAS  Google Scholar 

  • Xuan, T. D. and Tsuzuki, E. 2002. Varietal differences in allelopathic potential of alfalfa. J. Agronomy and Crop Science 188:2–7.

    Article  Google Scholar 

  • Yoshikawa, M., Gemma, H., Sobajima, Y., and Masago, H. 1986. Rooting cofactor activity of plant phytoalexins. Plant Physiol. 82:864–866.

    Article  PubMed  CAS  Google Scholar 

  • Yu, O., Shi, J., Hession, A. O., Maxwell, C. A., McGonigle, B., and Odell, J. T. 2003. Metabolic engineering to increase isoflavone biosynthesis in soybean seed. Phytochemistry 63:753–763.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., Subramanian, S., Stacey, G., and Yu, O. 2009. Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti. Plant J. 57:171–183.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, H., Mallik, A., and Zeng, R. 2013. Control of Panama disease of banana by rotating and intercropping with Chinese chive (Allium tuberosum Rottler): Role of plant volatiles. J. Chem. Ecol. 39:243–252.

    Google Scholar 

  • Zhao, J. and Dixon, R. A. 2009. MATE transporters facilitate vacuolar uptake of epicatechin 3 ′-O-glucoside for proanthocyanidin biosynthesis in Medicago truncatula and Arabidopsis. Plant Cell 21:2323–2340.

    Article  PubMed  CAS  Google Scholar 

  • Zuanazzi, J. A. S., Clergeot, P. H., Quirion, J. C., Husson, H. P., Kondorosi, A., and Ratet, P. 1998. Production of Sinorhizobium meliloti nod gene activator and repressor flavonoids from Medicago sativa roots. Mol. Plant-Microbe Interact. 11:784–794.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Australian Research Council for funding for a Future Fellowship to UM (FT100100669) and New South Wales Office of Medical and Science Research for funding a Biofirst Life Sciences Research Fellowship to LAW. The authors also acknowledge the helpful reviews received during the review process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie A. Weston.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weston, L.A., Mathesius, U. Flavonoids: Their Structure, Biosynthesis and Role in the Rhizosphere, Including Allelopathy. J Chem Ecol 39, 283–297 (2013). https://doi.org/10.1007/s10886-013-0248-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-013-0248-5

Keywords

Navigation