Skip to main content
Log in

Glucose and Glucose Esters in the Larval Secretion of Chrysomela Lapponica; Selectivity of the Glucoside Import System from Host Plant Leaves

Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Larvae of Chrysomela lapponica (Coleoptera: Chrysomelidae) sequester characteristic O-glucosides from the leaves of their food plants, namely Betula and/or Salix The present study focuses on birch-feeding larvae of C. lapponica from the Altai region in East Kazakhstan. As in other sequestering leaf beetle larvae, the compounds are transported intact via different membrane barriers into the defensive system, followed by glucoside cleavage and subsequent transformations of the plant-derived aglycones. Unlike previous studies with model compounds, we studied the sequestration of phytogenic precursors by analyzing the complex pattern of glucosides present in food plant Betula rotundifolia (39 compounds) and compared this composition with the aglycones present as butyrate esters in the defensive secretion. In addition to the analytic approach, the insect’s ability, to transport individual glucosides was tested by using hydrolysis-resistant thioglucoside analogs, applied onto the leaf surface. The test compounds reach the defensive system intact and without intermediate transformation. No significant difference of the transport capacity and selectivity was observed between larvae of birch-feeding population from Kazakhstan, and previous results for larvae of birch-feeding population from the Czech Republic or willow-feeding populations. Overall, the transport of the phytogenic glucosides is highly selective and highly efficient, since only minor compounds of the spectrum of phytogenic glucoside precursors contribute to the limited number of aglycones utilized in the defensive secretion. Interestingly, salicortin 44 and tremulacin 60 were found in the leaves, but no aldehyde or esters of salicylalcohol. Surprisingly, we observed large amounts of free glucose, together with small amounts of 6-O-butyrate esters of glucose (27a/b and 28a/b).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Attygalle A. B., Meinwald J., and Eisner T. 1991. Biosynthesis of methacrylic acid and isobutyric acids in a carabid beetle, Scarites subterraneus. Tetrahedron Lett. 32:4805, 4849–4852.

    Article  CAS  Google Scholar 

  • Blum M. S., Wallace J. B., Duffield R. M., Brand J. M., Fales H. M., and Sokoloski E. A. 1978. Chrysomelidial in defensive secretion of leaf beetle Gastrophysa cyanea Melsheimer. J. Chem. Ecol. 4:47–53.

    Article  CAS  Google Scholar 

  • Calderon S., Holmstrup M., Westh P., and Overgaard J. 2009. Dual roles of glucose in the freeze-tolerant earthworm Dendrobaena octaedra: cryoprotection and fuel for metabolism. J. Exp. Biol. 212:859–866.

    Article  CAS  PubMed  Google Scholar 

  • Chung S. K., Kim Y. C., Takaya Y., Terashima K., and Niwa M. 2004. Novel flavonol glycoside, 7-O-methyl mearnsitrin, from Sageretia theezans and its antioxidant effect. J. Agric. Food Chem. 52:4664–4668.

    Article  CAS  PubMed  Google Scholar 

  • Discher S., Burse A., Tolzin-Banasch K., Heinemann S. H., Pasteels J. M., and Boland W. 2009. A versatile transport network for sequestering and excreting plant glycosides in leaf beetles provides an evolutionary flexible defense strategy. Chembiochem 10:2223–2229.

    Article  CAS  PubMed  Google Scholar 

  • Feld B. K., Pasteels J. M., and Boland W. 2001. Phaedon cochleariae and Gastrophysa viridula (Coleoptera : Chrysomelidae) produce defensive iridoid monoterpenes de novo and are able to sequester glycosidically bound terpenoid precursors. Chemoecology 11:191–198.

    Article  CAS  Google Scholar 

  • Greenham J., Harborne J. B., and Williams C. A. 2003. Identification of lipophilic flavones and flavonols by comparative HPLC, TLC and UV spectral analysis. Phytochem. Anal. 14:100–118.

    Article  CAS  PubMed  Google Scholar 

  • Gross J. and Schmidtberg H. 2009. Glands of leaf beetle larvae—protective structures against attacking predators and pathogens. pp. 177–189 in: Jolivet P., Santiago-Blay J., and Schmidt M., (eds.). Research on Chrysomelidae. Koninklijke Brill, Leiden.

    Google Scholar 

  • Gross J., Podsiadlowski L., and Hilker M. 2002. Antimicrobial activity of exocrine glandular secretion of Chrysomela larvae. J. Chem. Ecol. 28:317–331.

    Article  CAS  PubMed  Google Scholar 

  • Gross J., Schumacher K., Schmidtberg H., and Vilcinskas A. 2008. Protected by fumigants: Beetle perfumes in antimicrobial defense. J. Chem. Ecol. 34:179–188.

    Article  CAS  PubMed  Google Scholar 

  • Hansen S. H., Jensen A. G., Cornett C., Bjornsdottir I., Taylor S., Wright B., and Wilson I. D. 1999. High-performance liquid chromatography on-line coupled to high-field NMR and mass spectrometry for structure elucidation of constituents of Hypericum perforatum L. Anal. Chem. 71:5235–5241.

    Article  CAS  Google Scholar 

  • Hilker M. and Schulz S. 1994. Composition of larval secretion of Chrysomela lapponica (Coleoptera, Chrysomelidae) and its dependence on host-plant. J. Chem. Ecol. 20:1075–1093.

    Article  CAS  Google Scholar 

  • Horie T., Ohtsuru Y., Shibata K., Yamashita K., Tsukayama M., and Kawamura Y. 1998. C-13 NMR spectral assignment of the A-ring of polyoxygenated flavones. Phytochemistry 47:865–874.

    Article  CAS  Google Scholar 

  • Julkunen-Tiitto R. and Meier B. 1992. The enzymatic decomposition of salicin and its derivatives obtained from Salicaceae species. J. Nat. Prod. 55:1204–1212.

    Article  CAS  PubMed  Google Scholar 

  • Juvik J. A., Shapiro J. A., Young T. E., and Mutschler M. A. 1994. Acylglucoses from wild tomatoes alter behavior and reduce growth and survival of Helicoverpa zea and Spodoptera exigua (Lepidoptera, Noctuidae). J. Econ. Entomol. 87:482–492.

    CAS  Google Scholar 

  • Kinoshita T. and Firman K. 1996. Highly oxygenated flavonoids from Murraya paniculata. Phytochemistry 42:1207–1210.

    Article  CAS  Google Scholar 

  • Kuhn J. 2005. Diversität der Wehrchemie von Blattkäferlarven: Sequestrierung und de novo Synthese als Aspekte der Evolution von Chrysomeliden. Dissertation. Friedrich-Schiller-Universität Jena, Germany.

  • Kuhn J., Pettersson E. M., Feld B. K., Burse A., Termonia A., Pasteels J. M., and Boland W. 2004. Selective transport systems mediate sequestration of plant glucosides in leaf beetles: A molecular basis for adaptation and evolution. Proc. Natl. Acad. Sci. U. S. A. 101:13808–13813.

    Article  CAS  PubMed  Google Scholar 

  • Kuhn J., Pettersson E. M., Feld B. K., Nie L. H., Tolzin-Banasch K., M'Rabet S. M., Pasteels J., and Boland W. 2007. Sequestration of plant-derived phenolglucosides by larvae of the leaf beetle Chrysomela lapponica: Thioglucosides as mechanistic probes. J. Chem. Ecol. 33:5–24.

    Article  CAS  PubMed  Google Scholar 

  • Kunert M., Soe A., Bartram S., Discher S., Tolzin-Banasch K., Nie L., David A., Pasteels J., and Boland W. 2008. De novo biosynthesis versus sequestration: A network of transport systems supports in iridoid producing leaf beetle larvae both modes of defense. Insect Biochem. Mol. Biol. 38:895–904.

    Article  CAS  PubMed  Google Scholar 

  • Lindroth R. L. 1988. Hydrolysis of phenolic glycosides by midgut b-glucosidases in Papilio glaucus subspecies. Insect Biochem. 18:789–792.

    Article  CAS  Google Scholar 

  • Meinwald J., Jones T. H., Eisner T., and Hicks K. 1977. Defense-mechanisms of arthropods .56. New methylcyclopentanoid terpenes from larval defensive secretion of a chrysomelid beetle (Plagiodera versicolora). Proc. Natl. Acad. Sci. U. S. A. 74:2189–2193.

    Article  CAS  PubMed  Google Scholar 

  • Neal J. J., Tingey W. M., and Steffens J. C. 1990. Sucrose esters of carboxylic-acids in glandular trichomes of Solanum-berthaultii deter settling and probing by green peach aphid. J. Chem. Ecol. 16:487–497.

    Article  CAS  Google Scholar 

  • Pasteels J. M., Braekman J. C., Daloze D., and Ottinger R. 1982. Chemical defense in chrysomelid larvae and adults. Tetrahedron 38:1891–1897.

    Article  CAS  Google Scholar 

  • Pasteels J. M., Rowellrahier M., Braekman J. C., and Dupont A. 1983. Salicin from host plant as recursor of salicylaldehyde in defensive secretion of chrysomeline larvae. Physiol. Entomol. 8:307–314.

    Article  CAS  Google Scholar 

  • Pavan M. 1953. Antibiotics and insecticides of animal origin I. The active principle of the larva of Melasoma populi. Arch. Zool. Ital. 38:157–184.

    CAS  Google Scholar 

  • Schulz S., Gross J., and Hilker M. 1997. Origin of the defensive secretion of the leaf beetle Chrysomela lapponica. Tetrahedron 53:9203–9212.

    Article  CAS  Google Scholar 

  • Smite E., Lundgren L. N., and Andersson R. 1993. Arylbutanoid and diarylheptanoid glycosides from inner bark of Betula pendula. Phytochemistry 32:365–369.

    Article  CAS  Google Scholar 

  • Soe A. R. B., Bartram S., Gatto N., and Boland W. 2004. Are iridoids in leaf beetle larvae synthesized de novo or derived from plant precursors? A methodological approach. Isot. Environ. Health Stud. 40:175–180.

    Article  CAS  Google Scholar 

  • Termonia A. and Pasteels J. M. 1999. Larval chemical defence and evolution of host shifts in Chrysomela leaf beetles. Chemoecology 9:13–23.

    Article  CAS  Google Scholar 

  • Termonia A., Hsiao T. H., Pasteels J. M., and Milinkovitch M. C. 2001. Feeding specialization and host-derived chemical defense in Chrysomeline leaf beetles did not lead to an evolutionary dead end. Proc. Natl. Acad. Sci. U. S. A. 98:3909–3914.

    Article  CAS  PubMed  Google Scholar 

  • Tolzin-Banasch K. 2009. Wehrchemie in Blattkäfern: Aufklärung eines neuen Acylierungskomplexes in Insekten am Beispiel von Chrysomela lapponica. Dissertation. Friedrich-Schiller-Universität Jena, Germany.

  • Vieira R. F., Grayer R. J., and Paton A. J. 2003. Chemical protiling of Ocimum americanum using external flavonoids. Phytochemistry 63:555–567.

    Article  CAS  PubMed  Google Scholar 

  • Woudenberg-van oosterom M., Vitry C., Baas J. M. A., Vanrantwijk F., and Sheldon R. A. 1995. The regioselectivity of the lipase-catalyzed acylation of 1,6-anhydro-beta-D-glycopyranoses. J. Carbohydr. Chem. 14:237–246.

    Article  CAS  Google Scholar 

  • Yim S. H., Kim H. J., and Lee I. S. 2003. A polyacetylene and flavonoids from Cirsium rhinoceros. Arch.Pharm. Res. 26:128–131.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilhelm Boland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tolzin-Banasch, K., Dagvadorj, E., Sammer, U. et al. Glucose and Glucose Esters in the Larval Secretion of Chrysomela Lapponica; Selectivity of the Glucoside Import System from Host Plant Leaves. J Chem Ecol 37, 195–204 (2011). https://doi.org/10.1007/s10886-011-9913-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-011-9913-8

Key Words

Navigation