Skip to main content
Log in

Sensory Imbalance as Mechanism of Orientation Disruption in the Leafminer Phyllocnistis citrella: Elucidation by Multivariate Geometric Designs and Response Surface Models

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Experimental designs developed to address mixtures are suited ideally to many areas of experimental biology, including pheromone blend studies, because such designs address the confounding of proportionality and concentration intrinsic to factorial and one-factor-at-a-time designs. Geometric multivariate designs coupled with response surface modeling allowed us to identify optimal blends of a two-component pheromone for attraction and trap disruption of the leafminer moth, Phyllocnistis citrella, a major pest in citrus growing areas around the world. Field trials confirmed that the natural 3:1 blend of (Z,Z,E)-7,11,13-hexadecatrienal:(Z,Z)-7,11-hexadecadienal was most effective as an attractant for male moths. However, the response surface generated in mating orientation trials revealed that the triene component alone was more effective than the natural blend in disrupting trap catch. Each individual component was effective at disrupting orientation in field trials, but (Z,Z,E)-7,11,13-hexadecatrienal was approximately 13 times more effective, at the same concentration, compared with (Z,Z)-7,11-hexadecadienal alone. In addition, the application of geometric design and response surface modeling to field studies provided insight into a possible mechanism of mating disruption and supported sensory imbalance as the operating mechanism for this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson, M. J. and Whitcomb, P. J. 2005. RSM Simplified: Optimizing Processes Using Response Surface Methods for Design of Experiments. Productivity, New York.

    Google Scholar 

  • Bartell, R. J. 1982. Mechanisms of communication disruption by pheromone in the control of Lepidoptera: a review. Physiol. Entomol. 7:353–364.

    Article  CAS  Google Scholar 

  • Bellas, T. E. and Bartell, R. J. 1983. Dose-response relationship for two components of the sex pheromone of lightbrown apple moth, Epiphyas postvittana (Lepidoptera: Tortricidae). J. Chem. Ecol. 9:715–725.

    Article  CAS  Google Scholar 

  • Belsley. D. A., Kuh, E., and Welsch, R. E. 1980. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity. Wiley & Sons, New York.

    Google Scholar 

  • Box, G. E. P. and Cox, D. R. 1964. An analysis of transformations (with discussion). J. Royal. Stat. Soc. Ser. B 26:211–246.

    Google Scholar 

  • Box, M. J. and Draper, N. R. 1971. Factorial designs, the X’X criterion, and some related matters. Technometrics. 13:731–742.

    Article  Google Scholar 

  • Cardé, R. T. 1990. Principals of mating disruption, pp. 47–71, in Ridgway, R. L., Silverstein, R. M., and Inscoe, M. N. (eds.). Behavior-Modifying Chemicals for Pest Management: Applications of Pheromones and Other Attractants. Marcel Dekker, New York.

    Google Scholar 

  • Cardé, R. T. and Minks, A. K. 1995. Control of moth pests by mating disruption: successes and constraints. Annu. Rev. Entomol. 40:559–585.

    Article  Google Scholar 

  • Charlton, R. E. and Cardé, R. T. 1981. Comparing the effectiveness of sexual communication disruption in the oriental fruit moth (Grapholitha molesta) using different combinations and dosages of its pheromone blend. J. Chem. Ecol. 7:501–508.

    Article  CAS  Google Scholar 

  • COOK, R. D. and WEISBERG, S. 1982. Residuals and Influence in Regression. Chapman and Hall, New York.

    Google Scholar 

  • Cornell, J. A. 2002. Experiments with Mixtures. 3rd edn., Wiley & Sons, New York.

    Google Scholar 

  • Evens, T. J. and Niedz, R. P. 2008. Are Hofmeister series relevant to modern ion-specific effects research? Scholarly Research Exchange vol. 2008, Article ID 818461, 2008. doi:10.3814/2008/818461

  • Flint, H. M. and Merkle, J. R. 1983. Pink bollworm (Lepidoptera: Belechiidae): communication disruption by pheromone composition imbalance. J. Econ. Entomol. 76:40–46.

    CAS  Google Scholar 

  • Gottwald, T. R., Bassanezi, R. B., Amorim, L., and Bergamin-Filho A (2007) Spatial pattern analysis of citrus canker-infected plantings in São Paulo, Brazil, and augmentation of infection elicited by the Asian leafminer. Phytopathol. 97:674–683.

    Article  CAS  Google Scholar 

  • Heppner, J. B. 1993. Citrus leafminer, Phyllocnistis citrella, in Florida. Trop. Lepidoptera. 4:49–64.

    Google Scholar 

  • Lapointe, S. L., Evens, T. J., and Niedz, R. P. 2008. Insect diets as mixtures: optimization for a polyphagous weevil. J. Insect. Physiol. 54:1157–1167.

    Article  PubMed  CAS  Google Scholar 

  • Lapointe, S. L., Hall, D. G., Murata, Y., Parra-Pedrazzoli, A. L., Bento, J. M. S., Vilela, E., and Leal, W. S. 2006. Field evaluation of a synthetic female sex pheromone for the leafmining moth Phyllocnistis citrella (Lepidoptera: Gracillariidae) in Florida citrus. Fla. Entomol. 89:274–276.

    Article  CAS  Google Scholar 

  • Leal, W. S., Parra-Pedrazzoli, A. L., Cossé, A. A., Murata, Y., Bento, J. M. S., and Vilela, E. F. 2006. Identification, synthesis, and field evaluation of the sex pheromone from the citrus leafminer, Phyllocnistis citrella. J. Chem. Ecol. 32:155–168.

    Article  PubMed  CAS  Google Scholar 

  • Miller, J. R., Gut, L. J., De Lame, F. M., and Stelinski, L.L. 2006a. Differentiation of competitive vs. non-competitive mechanisms mediating disruption of moth sexual communication by point sources of sex pheromone (Part 1): theory. J. Chem. Ecol. 32:2089–2114.

    Article  CAS  Google Scholar 

  • Miller, J. R., Gut, L. J., De Lame, F. M., and Stelinski, L. L. 2006b. Differentiation of competitive vs. non-competitive mechanisms mediating disruption of moth sexual communication by point sources of sex pheromone (Part 2): case studies. J. Chem. Ecol. 32:2115-2143.

    Article  CAS  Google Scholar 

  • Minks, A. K. and Cardé, R. T. 1988. Disruption of pheromone communication in moths: is the natural blend really most efficacious? Entomol. exp. appl. 49:25–36.

    Article  Google Scholar 

  • Moreira, J. A., McElfresh, S., and Millar, J. G. 2006. Identification, synthesis, and field testing of the sex pheromone of the citrus leafminer, Phyllocnistis citrella. J. Chem. Ecol. 32:169–194.

    Article  PubMed  CAS  Google Scholar 

  • Myers, R. H. 1990. Classical and Modern Regression with Applications. 2nd edn, PWS-KENT, Boston.

    Google Scholar 

  • Myers, R. H. and Montgomery, D. C. 2002. Response Surface Methodology: Process and Product Optimization Using Designed Experiments. 2nd edn., Wiley & Sons, New York.

    Google Scholar 

  • Niedz, R. P. and Evens, T. J. 2008. The effects of nitrogen and potassium nutrition on the growth of nonembryogenic and embryogenic tissue of sweet orange (Citrus sinensis (L.) Osbeck). BMC Plant Biology 8:126.

    Article  PubMed  CAS  Google Scholar 

  • Novak, M. A. and Roelofs, W. L. 1985. Behavior of male redbanded leafroller moths, Argyrotaenia velutinana (Lepitdoptera: Tortricidae), in small disruption plots. Environ. Entomol. 14:12–16.

    Google Scholar 

  • Peña, J. E., Hunsberger, A., and Schaffer, B. 2000. Citrus leafminer (Lepidoptera: Gracillariidae) density: effect on yield of ‘Tahiti’ Lime. J. Econ. Entomol. 93:374–379.

    Article  PubMed  Google Scholar 

  • Piepel, G. F. 1982. Measuring component effects in constrained mixture experiments. Technometrics. 24:29–39.

    Article  Google Scholar 

  • Roelofs, W. L. 1978. Threshold hypothesis for pheromone perception. J. Chem. Ecol. 4: 685–699.

    Article  CAS  Google Scholar 

  • Stelinski, L. L., Miller, J. R., and Rogers, M. E. 2008. Mating disruption of citrus leafminer mediated by a noncompetitive mechanism at a remarkably low pheromone release rate. J. Chem. Ecol. 34:1107–1113.

    Article  PubMed  CAS  Google Scholar 

  • Weisberg, S. 1985. Applied Linear Regression. 2nd edn. Wiley & Sons, New York.

    Google Scholar 

  • Witzgall, P., Stelinski, L., Gut, L., and Thomson, D. 2008. Codling moth management and chemical ecology. Annu. Rev. Entomol. 53:503–522.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Evans Properties, Vero Beach, FL for use of their grapefruit groves. David Melius, Kelsey Stevens, Alex Pheneger, Kathy Moulton, Matt Hentz and Anthea Diamondis (USDA-ARS, Ft. Pierce) and Ian Jackson, Angel Hoyte and Wendy Meyer (UF, Lake Alfred) assisted with field trials. ISCA Technologies provided lures and SPLAT formulations. Partial funding was provided by USDA’s IR-4 Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen L. Lapointe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lapointe, S.L., Stelinski, L.L., Evens, T.J. et al. Sensory Imbalance as Mechanism of Orientation Disruption in the Leafminer Phyllocnistis citrella: Elucidation by Multivariate Geometric Designs and Response Surface Models. J Chem Ecol 35, 896–903 (2009). https://doi.org/10.1007/s10886-009-9674-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-009-9674-9

Keywords

Navigation