Skip to main content
Log in

Hydrocarbons in the Ant Lasius niger: From the Cuticle to the Nest and Home Range Marking

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The cuticular hydrocarbons (CHCs) of the ant Lasius niger are described. We observe a high local colony specificity of the body cuticular profile as predicted for a monogynous and multicolonial species. The CHCs show a low geographical variation among different locations in France. The CHCs on the legs also are colony specific, but their relative quantities are slightly different from those on the main body. For the first time, we demonstrate that the inner walls of the ant nest are coated with the same hydrocarbons as those found on the cuticle but in different proportions. The high amount of inner-nest marking and its lack of colony-specificity may explain why alien ants are not rejected once they succeed in entering the nest. The cuticular hydrocarbons also are deposited in front of the nest entrance and on the foraging arena, with a progressive increase in n-alkanes relative amounts. Chemical marks laid over the substrate are colony specific only when we consider methyl-branched alkanes. Our data confirm that these “footprint hydrocarbons” are probably deposited passively by the contact of ant tarsae with the substrate. These results suggest that the CHCs chemical profiles used by ants in colony recognition are much more complex than a single template: ants have to learn and memorize odors that vary depending on their context of perception.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • AKINO, T., 2008. Chemical strategies to deal with ants: A review of mimicry, camouflage, propaganda, and phytomimesis by ants (Hymenoptera: Formicidae) and other arthopods. Myrmecological News 11:173–181.

    Google Scholar 

  • AKINO, T., and YAMAOKA, R., 2005. Trail discrimination signal of Lasius japonicus. Chemoecology 15:21–30.

    Article  CAS  Google Scholar 

  • AME, J.-M., RIVAULT, C., and DENEUBOURG, J.-L., 2004. Cockorach aggregation based on strain odour recognition. Anim. Behav. 68:793–801.

    Article  Google Scholar 

  • ARON, S., STEINHAUER, N., and FOURNIER, D., 2009. Influence of queen phenotype, investment and maternity apportionment on the outcome of fights in cooperative foundations of the ant Lasius niger. Anim. Behav. 77:1067–1074.

    Article  Google Scholar 

  • BAGNÈRES, A. G., and MORGAN, E. D., 1991. The postpharyngeal glands and the cuticle of Formicidae contain the same characteristic hydrocarbons. Experientia 47:106–111.

    Article  Google Scholar 

  • BILLEN, J., 2008. Occurrence and structural organization of the exocrine glands in the legs of ants. Arthr. Struct. Develop. 38:2–15.

    Article  CAS  Google Scholar 

  • BONAVITA-COUGOURDAN, A., CLÉMENT, J.-L., and LANGE, C., 1993. Functional subcaste discrimination (foragers and brood-tenders) in the ant Camponotus vagus Scop.: polymorphism of cuticular hydrocarbon patterns. J. Chem. Ecol. 19:1461–1477.

    Article  CAS  Google Scholar 

  • BOOMSMA, J. J., and VAN DER HAVE, T. M., 1998. Queen mating and paternity variation in the ant Lasius niger. Mol. Ecol. 7:1709-1718.

    Article  Google Scholar 

  • BOULAY, R., CERDÁ, X., SIMON, T., ROLDAN, M., and HEFETZ, A., 2007. Intraspecific competition in the ant Camponotus cruentatus: should we expect the ‘dear enneny’ effect? Anim. Behav. 74:985–993.

    Article  Google Scholar 

  • BUTLER, C. G., FLETCHER, D. J. C., and WALTER, D., 1969. Nest entrance marking with pheromones by the honeybee Apis mellifera and by the wasp Vespula vulgaris. Anim. Behav. 17:142–147.

    Article  Google Scholar 

  • CAMMAERTS, M.-C., and CAMMAERTS, R., 1998. Marking of nest entrance vicinity in the ant Pheidole pallidula (Formicidae, Myrmicinae). Behav. Process. 42:19–31.

    Article  Google Scholar 

  • CAMMAERTS, M.-C., and CAMMAERTS, R., 1999. Marking of the nest entrances and their vicinities in the Myrmica rubra. Biologia 54:553–566.

    Google Scholar 

  • CAMMAERTS, M.-C., and CAMMAERTS, R., 2000. Foraging area in two related Tetramorium ant species. J. Ins. Behav. 13:679–698.

    Article  Google Scholar 

  • CZECHOWSKI, W., 1984. Tournaments and raids in Lasius niger (L.) (Hymenoptera, Formicidae). Ann. Zool., Warszawa 38:81–91.

    Google Scholar 

  • DAHBI, A., CERDÁ, X., HEFETZ, A., and LENOIR, A., 1996. Social closure, aggressive behavior, and cuticular hydrocarbon profiles in the polydomous ant Cataglyphis iberica (Hymenoptera, Formicidae). J. Chem. Ecol. 22:2173–2186.

    Article  CAS  Google Scholar 

  • DANI, F. R., JONES, G. R., DESTRI, S., SPENCER, S. H., and TURILLAZZI, S., 2001. Deciphering the recognition signature within the cuticular chemical profile of paper wasps. Anim. Behav. 62:165–171.

    Article  Google Scholar 

  • DEPICKÈRE, S., FRESNEAU, D., DETRAIN, C., and DENEUBOURG, J.-L., 2004. Marking as a decision factor in the choice of new resting site in Lasius niger. Ins. Soc. 51:243–246.

    Google Scholar 

  • D’ETTORRE, P., and LENOIR, A., 2009. Nestmate Recognition in Ants L. Lach, C. Parr and K. Abbott (Eds), Ant Ecology. Oxford University Press, Oxford, in press.

    Google Scholar 

  • DEVIGNE, C., and DETRAIN, C., 2002. Collective exploitation and area marking in the ant Lasius niger. Ins. Soc. 49:357–362.

    Article  Google Scholar 

  • DEVIGNE, C., and DETRAIN, C., 2006. How does food distance influence foraging in the ant Lasius niger: The importance of home-range marking. Ins. Soc. 53:46–55.

    Article  Google Scholar 

  • DEVIGNE, C., RENON, A., and DETRAIN, C., 2004. Out of sight but not out of mind: modulation of recruitment according to home range marking in ants. Anim. Behav. 67:1023–1029.

    Article  Google Scholar 

  • DINTER, K., PAARMANN, W., PESCHKE, K., and ARNDT, E., 2002. Ecological, behavioural and chemical adaptations to ant predation in species of Thermophilum and Graphipterus (Coleoptera: Carabidae) in the Sahara desert. J. Arid Env. 50:267–286.

    Article  Google Scholar 

  • DOR, A., MACHKOUR-M’RABET, S., LEGAL, L., WILLIAMS, T., and HENAUT, Y., 2008. Chemically mediated burrow recognition in the mexican tarantula Barchypelma vagans female. Naturwissenschaften 95:1189-1193.

    Article  PubMed  CAS  Google Scholar 

  • DREIER, S., and D’ETTORRE, P., 2009. Social context predicts recognition systems in ant queens. J. Evol. Biol.: 22:644–649.

    Article  Google Scholar 

  • FRANKS, N. R., HOOPER, J. W., DORNHAUS, A., AUKETT, P. J., HAYWARD, A. L., and BERGHOFF, S. M., 2007. Reconnaissance and latent learning in ants. Proc. Roy. Soc. London B 274:1505–1509.

    Article  Google Scholar 

  • GIBBS, A. G., 1998. Water-Proofing properties of cuticular lipids. Amer. Zool. 38:471–482.

    CAS  Google Scholar 

  • GOULSON, D., STOUT, J. C., LANGLEY, J., and HUGUES, W. O. H., 2000. Identity and function of scent marks deposited by foraging bumblebess. J. Chem. Ecol. 26:2897–2911.

    Article  CAS  Google Scholar 

  • GRASSO, D. A., SLEDGE, M. F., LE MOLI, F., MORI, A., and TURILLAZZI, S., 2005. Nest-area marking with faeces: a chemical signature that allows colony-level recognition in seed-harvesting ants (Hymenoptera, Formicidae). Ins. Soc. 52:36-44.

    Article  Google Scholar 

  • GREENE, M. J., and GORDON, D. M., 2003. Cuticular hydrocarbons inform task decision. Nature 423:32.

    Article  PubMed  CAS  Google Scholar 

  • GUEDOT, C., PITTS-SINGER, T., BUCKNER, J. S., BOSCH, J., and KEMP, W. P., 2006. Olfactory cues and nest recognition in the solitary bee Osmia lignaria. Physiol. Entomol. 31:110–119.

    Article  CAS  Google Scholar 

  • HEFETZ, A., 2007. The evolution of hydrocarbon pheromone parsimony in ants (Hymenoptera: Formicidae)—interplay of colony odor uniformity and odor idiosynchrasy. Myrmecol News 10:59–68.

    Google Scholar 

  • HÖLLDOBLER, B., and WILSON, E. O., 1990. The Ants. The Belknap, Cambridge, 782

    Google Scholar 

  • LAHAV, S., SOROKER, V., VANDER MEER, R. K., and HEFETZ, A., 1998. Nestmate recognition in the ant Cataglyphis niger: do queens matter? Behav. Ecol. Sociobiol. 43:203–212.

    Article  Google Scholar 

  • LENOIR, A., CUISSET, D., and HEFETZ, A., 2001a. Effects of social isolation on hydrocarbon pattern and nestmate recognition in the ant Aphaenogaster senilis (Hymenoptera: Formicidae). Ins. Soc. 48:101–109.

    Article  Google Scholar 

  • LENOIR, A., D’ETTORRE, P., ERRARD, C., and HEFETZ, A., 2001b. Chemical ecology and social parasitism in ants. Annu. Rev. Entomol. 46:573–599.

    Article  CAS  Google Scholar 

  • LENOIR, J.-C., SCHREMPF, A., LENOIR, A., HEINZE, J., and MERCIER, J.-L., 2006. Genetic structure and reproductive strategy in the ant Cardiocondyla elegans: strictly monogynous nests invaded by unrelated sexuals. Mol. Ecol. 16:345–354.

    Article  Google Scholar 

  • LORENZO FIGUEIRAS, A. N., and LAZZARI, C. R., 1998. Aggregation in the haematophagous bug Triatoma infestans: a novel assembling factor. Physiol. Entomol. 23:33–37.

    Article  Google Scholar 

  • MARTIN, S. J., and DRIJFHOUT, F. P., 2009. Nestmate and task cues are influenced and encoded differently within ant cuticular hydrocarbon profiles. doi:10.1007/s10886-009-9612-x.

  • MARTIN, S. J., HELANTERÄ, H., and DRIJFHOUT, F. P., 2008a. Evolution of species-specific cuticular hydrocarbon patterns in Formica ants. Biol. J. Linn. Soc. 95:131–140.

    Article  Google Scholar 

  • MARTIN, S. J., VITIKAINEN, E., HELANTERÄ, H., and DRIJFHOUT, F. P., 2008b. Chemical basis of nestmate discrimination in the ant Formica exsecta. Proc. Roy. Soc. London, B 275:1271–1278.

    CAS  Google Scholar 

  • MAYADE, S., CAMMAERTS, M. C., and SUZZONI, J. P., 1993. Home range marking and territorial marking in Cataglyphis cursor (Hymenoptera: Formicidae). Behav. Process. 30:131–142.

    Article  Google Scholar 

  • NOWBAHARI, E., LENOIR, A., CLÉMENT, J. L., LANGE, C., BAGNÈRES, A. G., and JOULIE, C., 1990. Individual, geographical and experimental variation of cuticular hydrocarbons of the ant Cataglyphis cursor (Hymenoptera: Formicidae): their use in nest and subspecies recognition. Biochem. Syst. Ecol. 18:63–74.

    Article  CAS  Google Scholar 

  • OLIVER, T. H., MASHANOVA, A., LEATHER, S. R., COOK, J. M., and JANSEN, V. A. A., 2007. Ant semiochemicals limit apterous aphid dispersal. Proc. Roy. Soc. London, B.

  • OZAKI, M., WADA-KATSUMATA, A., FUJIKAWA, K., IWASAKI, M., YOKOHARI, F., SATOJI, Y., NISIMURA, T., and YAMAOKA, R., 2005. Ant nestmate and non-nestmate discrimination by a chemosensory sensillum. Science 309.

  • SALEH, N., SCOTT, A. G., BRYNING, G. P., and CHITTKA, L., 2007. Distinguishing signals and cues: bumblebees use general footprints to generate adaptive behaviour at flowers and nest. Arthr.-Plant Inter. 1:119–127.

    Article  Google Scholar 

  • SLEDGE, M. F., MONETI, G., PIERACCINI, G., and TURILLAZZI, S., 2000. Use of solid-phase microextraction in the investigation of chemical communication in social wasps. J. chrom. A 973:73–77.

    Article  Google Scholar 

  • SOROKER, V., and HEFETZ, A., 2000. Hydrocarbon site of synthesis and circulation in the desert ant Cataglyphis niger. J. Ins. Physiol. 46:1097–1102.

    Article  CAS  Google Scholar 

  • STECK, K., HANSSON, B. S., and KNADEN, M., 2009. Smells like home: desert ants, Cataglyphis fortis, use olfactory ladmarks to pinpoint the nest. Front. Zool. 6:5.

    Article  PubMed  Google Scholar 

  • STEINER, F. M., SCHLICK-STEINER, B. C., NIKIFOROV, A., KALB, R., and MISTRIK, R., 2002. Cuticular hydrocarbons of Tetramorium ants from Central Europe: analysis of GC-MS data with self-organizing maps (SOM) and implications for systematics. J. Chem. Ecol. 28:2569–2584.

    Article  PubMed  CAS  Google Scholar 

  • TENTSCHERT, J., BESTMANN, H.-J., and HEINZE, J., 2002. Cuticular compounds of workers and queens in two Leptothorax ant species—a comparison of results obtained by solvent extraction, solid sampling, and SPME. Chemoecol. 12:15–21.

    Article  CAS  Google Scholar 

  • UGELVIG, L. V., DRIJFHOUT, F. P., KRONAUER, D. J. C., BOOMSMA, J. J., PEDERSEN, J. S., and CREMER, S., 2008. The introduction history of invasive garden ants in Europe: Integrating genetic, chemical and behavioural approaches. BMC Biol. 6:11:doi:10.1186/1741-7007-6-11.

    Article  PubMed  CAS  Google Scholar 

  • VAN DER HAVE, T. M., BOOMSMA, J. J., and MENKEN, S. B. J., 1988. Sex-investment ratios and relatedness in the monogynous ant Lasius niger. Evol. 42:160–172.

    Article  Google Scholar 

  • WAGNER, D., TISSOT, M., and GORDON, D. M., 2001. Task-related environment alters the cuticular hydrocarbon composition of harvester ants. J. Chem. Ecol 27:1805–1819.

    Article  PubMed  CAS  Google Scholar 

  • WENSELEERS, T., BILLEN, J., and HEFETZ, A., 2002. Territorial marking in the desert ant Cataglyphis niger: does it pay to play bourgeois? J. Ins. Behav. 15:85–93.

    Article  Google Scholar 

  • WITTE, V., LEINGÄRTNER, A., SABAß, L., HASHIM, R., and FOITZIK, S., 2008. Symbiont microcosm in an ant society and the diversity of interspecific interactions. Anim. Behav. 76:1477–1486.

    Article  Google Scholar 

  • YAMAOKA, R., and AKINO, T. (1994). Ecological Importance of Cuticular Hydrocarbons Secreted from the Tarsus of Ants. Les Insectes Sociaux, Paris-Sorbonne, 21–27 août 1994, Univ. Paris Nord.

Download references

Acknowledgments

We thank Guy Bourdais for help in ant rearing, Xavier Espadaler and Bernard Seifert for verification of the ant species determination, and two anonymous reviewers for helpful comments. C. Detrain is senior research associate from the Belgian National Fund for Scientific Research. This work was partially supported by a grant from the FRFC (N° 2.4600.09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Lenoir.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

List of hydrocarbons and relative quantities (Mean ± SD) obtained from liquid extracts and SPME. (XLS 38 kb)

Fig. S1

Chromatogram of Lasius niger pentane extract obtained by FID. For peak numbers see Table S1.

High Resolution Image

(TIFF 3031 kb)

Fig. S2

Discriminant analysis of colonies T5, T6 and T7 for hydrocarbons obtained by SPME from the cuticle and legs, with the colony as a grouping factor. Ellipses are 95% confidence intervals.

High Resolution Image

(TIFF 860 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lenoir, A., Depickère, S., Devers, S. et al. Hydrocarbons in the Ant Lasius niger: From the Cuticle to the Nest and Home Range Marking. J Chem Ecol 35, 913–921 (2009). https://doi.org/10.1007/s10886-009-9669-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-009-9669-6

Keywords

Navigation