Skip to main content
Log in

Dynamic Scaling in Chemical Ecology

  • Review Article
  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Natural rates of chemical production, release, and transport of fluid-borne molecules drive fundamental biological responses to these stimuli. The scaling of the field signaling environment to laboratory conditions recreates essential features of the dynamics and establishes ecological relevance. If appropriately scaled, laboratory simulations of physical regimes, coupled with natural rates of chemical cue/signal emission, facilitate interpretation of field results. From a meta-analysis of papers published in 11 journals over the last 22 years (1984–1986, 1994–1996, 2004–2006), complete dynamic scaling was rare in both field and laboratory studies. Studies in terrestrial systems often involved chemical determinations, but rarely simulated natural aerodynamics in laboratory wind tunnels. Research in aquatic (marine and freshwater) systems seldom scaled either the chemical or physical environments. Moreover, nearly all research, in all environments, focused on organism-level processes without incorporating the effects of individual-based behavior on populations, communities, and ecosystems. As a result, relationships between chemosensory-mediated behavior and ecological function largely remain unexplored. Outstanding exceptions serve as useful examples for guiding future research. Advanced conceptual frameworks and refined techniques offer exciting opportunities for identifying the ecological significance of chemical cues/signals in behavioral interactions and for incorporating individual effects at higher levels of biological organization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ache, B. W. 1994. Towards a common strategy for transducing olfactory information. Semin. Cell. Biol. 5:55–63.

    PubMed  CAS  Google Scholar 

  • Agelopoulos, N. G., Dicke, M., and Posthumus, M. A. 1995. Role of volatile infochemicals emitted by feces of larvae in host-searching behavior of parasitoid Cotesia rubecula (Hymenoptera: Braconidae): A behavioral and chemical study. J. Chem. Ecol. 21:1789–1811.

    CAS  Google Scholar 

  • Agrawal, A. A. 2000. Communication between plants: This time it’s real. Trends Ecol. Evol. 15:446.

    PubMed  Google Scholar 

  • Agrawal, A. A., Lau, J. A., and Hambäck, P. A. 2006. Community heterogeneity and the evolution of interactions between plants and insect herbivores. Q. Rev. Biol. 81:349–376.

    PubMed  Google Scholar 

  • Alborn, H. T., Turlings, T. C. J., Jones, T. H., Stenhagen, G., Loughrin, J. H., and Tumlinson, J. H. 1997. An elicitor of plant volatiles from beet armyworm oral secretion. Science 276:945–949.

    CAS  Google Scholar 

  • Ando, T., Inomata, S., and Yamamoto, M. 2004. Lepidopteran sex pheromones. Topics Curr. Chem. 239:51–96.

    CAS  Google Scholar 

  • Atsatt, P. R., and O’dowd, D. J. 1976. Plant defense guilds: many plants are functionally independent with respect to their herbivores. Science 193:24–29.

    PubMed  Google Scholar 

  • Bakus, G. J., Targett, N. M., and Schulte, B. 1986. Chemical ecology of marine organisms: An overview. J. Chem. Ecol. 12:951–987.

    CAS  Google Scholar 

  • Baldwin, I. T., Halitschke, R., Paschoid, A., Von Dahl, C. C., and Preston, C. A. 2006. Volatile signaling in plant-plant interactions: “Talking trees” in the genomics era. Science 311:812–815.

    PubMed  CAS  Google Scholar 

  • Bau, J., Justus, K. A., Loudon, C., and Cardé, R. T. 2005. Electroantennographic resolution of pulsed pheromone plumes in two species of moths with bipectinate antennae. Chem. Senses 30:771–780.

    PubMed  Google Scholar 

  • Bernays, E. A., Chapman, R. F., and Hartmann, T. 2002a. A highly sensitive taste receptor cell for pyrrolizidine alkaloids in the lateral galeal sensillum of a polyphagous caterpillar, Estigmene acrea. J. Comp. Physiol. A. 188:715–723.

    CAS  Google Scholar 

  • Bernays, E. A., Chapman, R. F., and Hartmann, T. 2002b. A taste receptor neuron dedicated to the perception of pyrrolizidine alkaloids in the medial galeal sensillum of two polyphagous arctiid caterpillars. Physiol. Entomol. 27:312–321.

    CAS  Google Scholar 

  • Bernot, R. J., and Turner, A. M. 2001. Predator identity and trait-mediated indirect effects in a littoral food web. Oecologia 129:139–146.

    Google Scholar 

  • Bertness, M. D., and Callaway, R. 1994. Positive interactions in communities. Ecology 9:191–193.

    Google Scholar 

  • Blaustein, L., Kiflawi, M., Eitam, A., Mangel, M., and Cohen, J. E. 2004. Oviposition habitat selection in response to risk of predation in temporary pools: Mode of detection and consistency across experimental treatments. Oecologica 138:300–305.

    Google Scholar 

  • Boettcher, A. A., and Targett, N. M. 1996. Induction of metamorphosis in queen conch, Strombus gigas Linnaeus, larvae by cues associated with red algae from their nursery grounds. J. Exp. Mar. Biol. Ecol. 196:29–52.

    Google Scholar 

  • Brodin, T., Mikolajewski, D. J., and Johansson, F. 2006. Behavioral and life history effects of predator diet cues during ontogeny in damselfly larvae. Oecologia 148:162–169.

    PubMed  Google Scholar 

  • Bruno, J. F., and O’connor, M. L. 2005. Cascading effects of predatory diversity and omnivory in a marine food web. Ecol. Letters 8:1048–1056.

    Google Scholar 

  • Bruno, J. F., Stachowicz, J. J., and Bertness, M. D. 2003. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18:119–125.

    Google Scholar 

  • Butman, C. A. 1987. Larval settlement of soft-sediment invertebrates: The spatial scales of pattern explained by active habitat selection and the emerging role of hydrodynamical processes. Oceanogr. Mar. Biol. Annu. Rev. 25:113–165.

    Google Scholar 

  • Camacho, A. D., Pierce, H. D., and Borden, J. H. 1994. Aggregation pheromones in Dryocetes affaber (Mann) (Coleoptera, Scolytidae): Stereoisomerism and species specificity. J. Chem. Ecol. 20:111–124.

    CAS  Google Scholar 

  • Camacho, F. A., and Thacker, R. W. 2006. Amphipod herbivory on the freshwater cyanobacterium Lyngbya wollei: Chemical stimulants and morphological defenses. Limnol. Oceanogr. 51:1870–1875.

    CAS  Google Scholar 

  • Carpenter, S. R., Kitchell, J. F., and Hodgson, J. R. 1985. Cascading trophic interactions and lake productivity. Bioscience 35:634–639.

    Google Scholar 

  • Carr, W. E. S. 1988. The molecular nature of chemical stimuli in the aquatic environment, pp. 3–27, in J. Atema, R. R. Fay, A. N. Popper, and W. N. Tavolga (eds.). The Sensory Biology of Aquatic Animals. Springer-Verlag, New York, N.Y.

    Google Scholar 

  • Connell, J. H. 1970. A predator-prey system in marine intertidal region: I. Balanus glandula and several predatory species of Thais. Ecol. Monogr. 40:49–78.

    Google Scholar 

  • Crespi, B. J. 2001. The evolution of social behavior in microorganisms. Trends Ecol. Evol. 16:178–183.

    PubMed  Google Scholar 

  • Crimaldi, J. P., Wiley, M. B., and Koseff, J. R. 2002. The relationship between mean and instantaneous structure in turbulent passive scalar plumes. J. Turbulence Article 014.

  • Cummins, S. E., Schein, C. H., Xu, Y., Braun, W., and Nagle, G. T. 2005. Molluscan attractins: A family of water-borne protein pheromones with interspecific attractiveness. Peptides 26:121–129.

    PubMed  CAS  Google Scholar 

  • Dacey, J. W. H., King, G. M., and Wakeham, S. G. 1987. Factors controlling emission of dimethylsulfide from salt marshes. Nature 330:643–645.

    CAS  Google Scholar 

  • Dacey, J. W. H., and Wakeham, S. G. 1986. Oceanic dimethylsulfide: Production during zooplankton grazing on phytoplankton. Science 233:1314–1316.

    PubMed  CAS  Google Scholar 

  • De Moraes, C. M., Lewis, W. J., Pare, P. W., Alborn, H. T., and Tumlinson, J. H. 1998. Herbivore-infested plants selectively attract parasitoids. Science 393:570–573.

    Google Scholar 

  • Denny, M. W. 1988. Biology and the Mechanics of the Wave-Swept Environment. Princeton University Press, Princeton, N. J.

    Google Scholar 

  • Dicke, M., and Sabelis, M. 1988. Infochemical terminology: based on cost-benefit analysis rather than origin of compounds? Funct. Ecol. 2:131–139.

    Google Scholar 

  • Dreanno, C., Matsumura, K., Dohmae, N., Takio, K., Hirota, H., Kirby, R. R., and Clare, A. S. 2006. An α2-macroglobulin-like protein is the cue to gregarious settlement of the barnacle Balanus amphitrite. Proc. Natl. Acad. Sci., USA 39:14396–14401.

    Google Scholar 

  • Duffy, J. E., and Stachowicz, J. J. 2006. Why biodiversity is important to oceanography: Potential roles of genetics, species, and trophic diversity in pelagic ecosystem processes. Mar. Ecol. Prog. Ser. 311:179–189.

    Google Scholar 

  • Dussourd, D. E., Harvis, C. A., Meinwald, J., and Eisner, T. 1989. Pheromonal advertisement of a nuptial gift by a male moth (Utetheisa ornatrix). Proc. Natl. Acad. Sci. USA 88:9224–9227.

    Google Scholar 

  • Eisner, T., and Eisner, M. 1991. Unpalatability of the pyrrolizidine alkaloid-containing moth Utetheisa ornatrix and its larva to wolf spiders. Psyche 98:111–118.

    Google Scholar 

  • Eisner, T., Eisner, M., Rossinin, C., Iyengar, V. K., Roach, B. L., Benedikt, E., and Meinwald, J. 2000. Chemical defense against predation in an insect egg. Proc. Natl. Acad. Sci. USA 97:1634–1639.

    PubMed  CAS  Google Scholar 

  • Elkinton, J. S., Cardé, R. T., and Mason, C. J. 1984. Evaluations of time-average dispersion models for estimating pheromone concentration in a deciduous forest. J. Chem. Ecol. 10:1081–1108.

    CAS  Google Scholar 

  • Feeny, P. P. 1976. Plant apparency and chemical defense, pp. 1–40, in J. W. Wallace, and R. L. Mansell (eds.). Biochemical Interactions between Plants and Insects. Plenum, New York, N.Y.

    Google Scholar 

  • Fenchel, T. 2002. Microbial behavior in a heterogeneous world. Science 296:1068–1071.

    PubMed  CAS  Google Scholar 

  • Filippova, L. V., and Nozdrachev, A. D. 2007. The role of visceral receptors in the mechanisms of neuroimmune interactions in mammalian small intestine. Biol. Bull. 34:277–285.

    CAS  Google Scholar 

  • Finelli, C. M., Pentcheff, N., Zimmer, R. K., and Wethey, D. S. 2000. Physical constraints on ecological processes: A field test of odor-mediated foraging. Ecology 81:784–797.

    Google Scholar 

  • Finelli, C. M., Pentcheff, N. D., Zimmer-Faust, R. K., and Wethey, D. S. 1999. Odor transport in turbulent flows: Constraints on animal navigation. Limnol. Oceanogr. 44:1056–1071.

    CAS  Google Scholar 

  • Frost, C. J., Appel, H. M., Carlson, J. E., De Moraes, C. M., Mescher, M. C., and Schultz, J. C. 2007. Within-plant signaling via volatiles overcomes vascular constraints on systemic signaling and primes responses against herbivores. Ecol. Lett. 10:490–498.

    PubMed  Google Scholar 

  • Gammans, N., Bullock, J. M., Gibbons, H., and Schonrogge, K. 2006. Reaction of mutualistic and granivorous ants to Ulex elaiosome chemicals. J. Chem. Ecol. 32:1935–1947.

    PubMed  CAS  Google Scholar 

  • Gates, R. D., Bil, K. Y., and Muscatine, L. 1999. The influence of anthozoan “host factor” on the physiology of a symbiotic dinoflagellate. J. Exp. Mar. Biol. Ecol. 232:241–259.

    Google Scholar 

  • Gates, R. D., Hoegh-Guldberg, O., Mcfall-Ngai, M. J., Bil, K. Y., and Muscatine, L. 1995. Free amino acids exhibit anthozoan “host factor” activity: They induce the release of photosynthate from symbiotic dinoflagellates in vitro. Proc. Natl. Acad. Sci., USA 92:7430–7434.

    PubMed  CAS  Google Scholar 

  • Gibson, G. D., and Chia, F. S. 1994. A metamorphic inducer in the opisthobranch Haminaea callidegenita: Partial purification and biological activity. Biol. Bull. 187:133–142.

    CAS  Google Scholar 

  • Glendenning, J. 2007. How do predators cope with chemically defended foods? Biol. Bull. 213:252–266.

    Google Scholar 

  • Hämback, P. A., and Beckerman, A. P. 2003. Herbivory and plant resource competition: A review of two interacting interactions. Oikos 101:26–37.

    Google Scholar 

  • Hamilton, J. G. C., Hall, D. R., and Kirk, W. D. J. 2005. Identification of a male-produced aggregation pheromone in the western flower thrips Frankliniella occidentalis. J. Chem. Ecol. 31:1369–1379.

    PubMed  CAS  Google Scholar 

  • Hardege, J., Bartels-Hardege, H., Muller, C. T., and Beckmann, M. 2004. Peptide pheromones in female Nereis succinea. Peptides 9:1517–1522.

    Google Scholar 

  • Hay, M. E. 1996. Marine chemical ecology: What’s known and what’s next? J. Exp. Mar. Biol. Ecol. 200:103–134.

    CAS  Google Scholar 

  • Hay, M. E., and Fenical, W. 1988. Marine plant–herbivore interactions: The ecology of chemical defense. Annu. Rev. Ecol. Syst. 19:111–145.

    Google Scholar 

  • Hay, M. E. 2002. The next wave in aquatic chemical ecology. J. Chem. Ecol. 28:1897–1899.

    CAS  Google Scholar 

  • Hense, B. A., Kuttler, C., Müller, J., Rothballer, M., Hartmann, A., and Kreft, J.-U. 2007. Does efficiency sensing unify diffusion and quorum sensing? Nature Rev. Microbiol. 5:230–239.

    CAS  Google Scholar 

  • Hildebrand, J. G. 1995. Analysis of chemical signals by nervous systems. Proc. Natl. Acad. Sci., USA 92:67–74.

    PubMed  CAS  Google Scholar 

  • Hildebrand, J. G., and Shepherd, G. M. 1997. Mechanisms of olfactory discrimination: Convergent evidence for common principles across phyla. Annu. Rev. Neurosci. 20:595–631.

    PubMed  CAS  Google Scholar 

  • Hirsch, A. M., Bauer, W. D., Bird, D. M., Cullimore, J., Tyler, B., and Yoder, J. I. 2003. Molecular signals and receptors: Controlling rhizosphere interactions between plants and other organisms. Ecology 84:858–868.

    Google Scholar 

  • Howe, N. R., and Sheikh, Y. M. 1975. Anthopleurine: A sea anemone alarm pheromone. Science 189:386–388.

    PubMed  CAS  Google Scholar 

  • Inouye, D. W., and Waller, G. D. 1984. Responses of honeybees (Apis mellifera) to amino acid solutions mimicking floral nectars. Ecology 65:618–625.

    CAS  Google Scholar 

  • Izaguirre, M. M., Mazza, C. A., Biondini, M., Baldwin, I. T., and Ballare, C. I. 2006. Remote sensing of future competitors: Impacts on plant chemical defenses. Proc. Natl. Acad. Sci., USA 103:7170–7174.

    PubMed  CAS  Google Scholar 

  • Jackson, J. L., Webster, D. R., Rahman, S., and Weissburg, M. J. 2007. Bed-roughness effects on boundary-layer turbulence and consequences for odor-tracking behavior of blue crabs (Callinectes sapidus). Limnol. Oceanogr. 52:1883–1897.

    Google Scholar 

  • Johnson, B. R., and Atema, J. 1986. Chemical stimulants for a component of feeding behavior in the common gulf weed shrimp, Leander tenuicornis (Say). Biol. Bull. 170:1–10.

    Google Scholar 

  • Jones, B. E. 2005. From waking to sleeping: Neuronal and chemical substrates. Trends Pharm. Sci. 26:578–586.

    PubMed  CAS  Google Scholar 

  • Jones, K. M., Kobayashi, H., Davies, B. W., Taga, M. E., & Walker, G. C. 2007. How rhizobial symbiants invade plants: the Sinororhizobium-Medicago model. Nature Rev. Microbiol 5:619–633.

    CAS  Google Scholar 

  • Jutel, M., Blaser, K., and Akdis, C. A. 2006. Histamine receptors in immune regulation and allergen-specific immunotherapy. Immunol. 26:245–257.

    Google Scholar 

  • Karp-Boss, L., Boss, E., and Jumars, P. A. 1996. Nutrient fluxes to planktonic osmotrophs in the presence of fluid motion. Oceanogr. Mar. Biol. Annu. Rev. 34:71–107.

    Google Scholar 

  • Kaupp, U. B., Hildebrand, E., and Weyand, I. 2006. Sperm chemotaxis in marine invertebrates – molecules and mechanisms. J. Cell Physiol. 208:487–496.

    PubMed  CAS  Google Scholar 

  • Keller, L., and Surette, M. G. 2006. Communication in bacteria: An ecological and evolutionary perspective. Nature Rev. Microbiol. 4:249–258.

    CAS  Google Scholar 

  • Kicklighter, C. E., Germann, M., Kamio, M., and Derby, C. D. 2007. Molecular identification of alarm cues in the defensive secretions of the sea hare Aplysia californica. Anim. Behav. 74:1481–1492.

    Article  Google Scholar 

  • Krug, P. J., and Manzi, A. E. 1999. Waterborne and surface-associated carbohydrates as settlement cues for larvae of the specialist marine herbivore, Alderia modesta. Biol. Bull. 197:94–103.

    CAS  Google Scholar 

  • Kunert, G., Otto, S., Rose, U. S. R., Gershenzon, J., and Weisser, W. W. 2005. Alarm pheromone mediates production of winged dispersal morphs in aphids. Ecol. Lett. 8:596–603.

    Google Scholar 

  • Kvitek, R. G. 1991. Paralytic shellfish toxins sequestered by bivalves as a defense against siphon-nipping fish. Mar. Biol. 111:369–374.

    Google Scholar 

  • Kvitek, R., and Bretz, C. 2004. Harmful algal bloom toxins protect bivalve populations from sea otter predation. Mar. Ecol. Prog. Ser. 271:233–243.

    Google Scholar 

  • Kvitek, R., and Bretz, C. 2005. Shorebird foraging behavior, diet, and abundance vary with harmful algal bloom toxin concentration in invertebrate prey. Mar. Ecol. Prog. Ser. 293:303–309.

    Google Scholar 

  • Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J. P., Hector, A., Hooper, D. U., Huston, M. A., Raffaelli, D., Schmid, B., Tilman, D., and Wardie, D. A. 2001. Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science 294:804–808.

    PubMed  CAS  Google Scholar 

  • Loughrin, J. H., Potter, D. A., and Hamilton-Kemp, T. R. 1995. Volatile compounds induced by herbivory act as aggregation kairomones for the Japanese beetle (Popillia japonica Newman). J. Chem. Ecol. 21:1457–1467.

    CAS  Google Scholar 

  • Mafra-Neto, A., and Cardé, R. T. 1994a. Fine-scale structure of pheromone plumes modulates upwind orientation of flying moths. Nature 369:142–144.

    CAS  Google Scholar 

  • Mafra-Neto, A., and Cardé, R. T. 1994b. Rate of realized interception of pheromone pulses in different wind speeds modulates almond moth orientation. J. Comp. Physiol. A. 182:563–572.

    Google Scholar 

  • Marden, J. H. 1984. Remote perception of floral nectar by bumblebees. Oecologia 64:232–240.

    Google Scholar 

  • Matrai, P., and Keller, M. D. 1994. Total organic sulfur and dimethylsulfoniopropionate in marine phytoplankton: Intracellular variations. Mar. Biol. 119:61–68.

    CAS  Google Scholar 

  • Matsumura, K. 1995. Tetrodotoxin as a pheromone. Nature 378:563–564.

    PubMed  CAS  Google Scholar 

  • Mayer, M. S., and Mclaughlin, J. R., eds. 1991. Handbook of Insect Pheromones and Sex Attractants. CRC Press, Boca Raton, FL. 992 p.

  • Mcclintock, J. B., and Baker, B. J., eds. 2001. Marine Chemical Ecology. CRC Press, Boca Raton, FL. 624 p.

  • Mead, K. S. 2002. From odor molecules to plume tracking: An interdisciplinary, multilevel approach to olfaction in stomatopods. Integ. Comp. Biol. 42:258–264.

    Google Scholar 

  • Miller, D. C., Jumars, P. A., and Nowell, A. R. M. 1984. Effects of sediment transport on deposit feeding: Scaling arguments. Limnol. Oceanogr. 29:1202–1217.

    Google Scholar 

  • Miller, R. L. 1985. Sperm chemo-orientation in the metazoa, pp. 275–337, in C. B. Metz, and A. Monroy (eds.). The Biology of Fertilization, Vol. 2. Academic Press, New York, N.Y.

    Google Scholar 

  • Moore, P. A., and Crimaldi, J. P. 2004. Odor landscapes and animal behavior: Tracking odor plumes in different physical worlds. J. Mar. Systems 49:55–64.

    Google Scholar 

  • Muller, C. H., Muller, W. H., and Haines, B. L. 1964. Volatile growth inhibitors produced by aromatic shrubs. Science 143:471–473.

    PubMed  CAS  Google Scholar 

  • Murdoch, W. W. 1969. Switching in general predators: Experiments on predator specificity and stability of prey populations. Ecol. Monogr. 39:335–354.

    Google Scholar 

  • Murlis, J., Elkinton, J. S., and Cardé, R. T. 1992. Odor plumes and how insects use them. Annu. Rev. Entomol. 37:505–532.

    Google Scholar 

  • Murlis, J., and Jones, C. 1981. Fine-scale structure of odour plumes in relation to insect orientation to distant pheromone and other attractant sources. Physiol. Entomol. 6:71–86.

    Google Scholar 

  • Murlis, J., Willis, M. A., and Cardé, R. T. 2000. Spatial and temporal structures of pheromone plumes in fields and forests. Physiol. Entomol. 25:211–222.

    CAS  Google Scholar 

  • Myers, R. A., and Worm, B. 2003. Rapid depletion of predatory fish communities. Nature 423:280–283.

    PubMed  CAS  Google Scholar 

  • Mylne, K. R., Davidson, M. J., and Thomson, D. J. 1996. Concentration fluctuation measurements in tracer plumes using high and low frequency response detectors. Boundary-Layer Meteorol. 79:225–242.

    Google Scholar 

  • Nevitt, G. A. 2000. Olfactory foraging by Antarctic Procelliform seabirds: Life at high Reynolds numbers. Biol. Bull. 198:245–253.

    PubMed  CAS  Google Scholar 

  • Nevitt, G. A., Veit, R. R., and Karieva, P. M. 1995. Dimethyl sulfide as a foraging cue for Antarctic Procelliform seabirds. Nature 376:680–682.

    CAS  Google Scholar 

  • Nowell, A. R. M., and Jumars, P. A. 1984. Flow environments of aquatic benthos. Annu. Rev. Ecol. Syst. 15:303–328.

    Google Scholar 

  • Nowell, A. R. M., and Jumars, P. A. 1987. Flumes: Theoretical and experimental considerations for simulation of benthic environments. Oceanogr. Mar. Biol. Annu. Rev. 25:91–112.

    Google Scholar 

  • Nylund, G. M., Gribben, P. E., De nys, R., Steinberg, P. D., and Pavia, H. 2007. Surface chemistry versus whole-cell extracts: Antifouling tests with seaweed metabolites. Mar. Ecol. Prog. Ser. 329:73–84.

    Google Scholar 

  • Paine, R. T. 1966. Food web complexity and species diversity. Am. Nat. 100:65–75.

    Google Scholar 

  • Painter, S. D., Clough, B., Garden, R. W., Sweedler, J. V., and Nagle, G. T. 1998. Characterization of Aplysia attractin, the first waterborne peptide pheromone in invertebrates. Biol. Bull. 194:120–131.

    PubMed  CAS  Google Scholar 

  • Pawlik, J. R. 1992. Chemical ecology of the settlement of benthic marine invertebrates. Oceanogr. Mar. Biol. Annu. Rev. 30:273–335.

    Google Scholar 

  • Pawlik, J. R., and Butman, C. A. 1993. Settlement of a marine tube worm as a function of current velocity: Interacting effects of hydrodynamics and behavior. Limnol. Oceanogr. 38:1730–1740.

    Google Scholar 

  • Peacor, S. D., and Werner, E. E. 2001. The contribution of trait-mediated indirect effects to the net effects of a predator. Proc. Natl. Acad. Sci., USA 98:3904–3908.

    PubMed  CAS  Google Scholar 

  • Perret, X., Staehelin, C., and Broughton, W. J. 2000. Molecular basis of symbiotic promiscuity. Microbiol. Mol. Biol. Rev. 64:180–201.

    PubMed  CAS  Google Scholar 

  • Peterson, J. E., and Hastings, A. 2001. Dimensional approaches to scaling experimental ecosystems: Designing mousetraps to catch elephants. Am. Nat. 157:324–333.

    Google Scholar 

  • Philips, D. A., Ferris, H., Cook, D. R., and Strong, D. R. 2003. Molecular control points in rhizosphere food webs. Ecology 84:816–826.

    Google Scholar 

  • Pohnert, G., Steinke, M., and Tollrian, R. 2007. Chemical cues, defence metabolites and the shaping of pelagic interspecific interactions. Trends Ecol. Evol. 22:198–204.

    PubMed  Google Scholar 

  • Preisser, E. L., Bolnick, D. I., and Bernard, M. F. 2005. Scared to death? The effects of intimidation and consumption in predator-prey interactions. Ecology 56:501–509.

    Google Scholar 

  • Redfield, R. J. 2002. Is quorum sensing a side effect of diffusion sensing? Trends Microbiol. 10:365–370.

    PubMed  CAS  Google Scholar 

  • Riffell, J. A., Krug, P. J., and Zimmer, R. K. 2002. Fertilization in the sea: The chemical identify of an abalone sperm attractant. J. Exp. Biol. 205:1439–1450.

    PubMed  CAS  Google Scholar 

  • Riffell, J. A., and Zimmer, R. K. 2007. Sex and flow: The consequences of fluid shear for sperm-egg interactions. J. Exp. Biol. 210:3644–3660.

    PubMed  Google Scholar 

  • Roelofs, W. L. 1995. Chemistry of sex attraction. Proc. Natl. Acad. Sci., USA 92:44–49.

    PubMed  CAS  Google Scholar 

  • Roelofs, W. L., Liu, W. T., Hao, G. X., Jiao, H. M., Rooney, A. P., and Linn, C. E. 2002. Evolution of moth sex pheromones via ancestral genes. Proc. Natl. Acad. Sci., USA 99:13621–13626.

    PubMed  CAS  Google Scholar 

  • Roelofs, W. L., and Rooney, A. P. 2003. Molecular genetics and evolution of pheromone biosynthesis in Lepidoptera. Proc. Natl. Acad. Sci., USA 100:9179–9184.

    PubMed  CAS  Google Scholar 

  • Sakata, K., Tsuge, M., and Ina, K. 1986. Chemical studies on phagostimulants for marine gastropods: A simple bioassay for feeding stimulants for the young sea hare, Aplysia juliana. Mar. Biol. 91:509–511.

    Google Scholar 

  • Shulz, S., Francke, W., Boppré, M., Eisner, T., and Meinwald, J. 1993. Defense mechanisms of arthropods: Stereochemical pathway of hydroxydanaidal production from alkaloid precursors in Creatonotos transiens (Lepidoptera, Arctiidae). Proc. Natl. Acad. Sci., USA 90:6834–6838.

    Google Scholar 

  • Smee, D. L., Ferner, M. C., and Weissburg, M. J. 2008. Alteration of sensory abilities regulates the spatial scale of nonlethal predator effects. Oecologia: in press.

  • Smee, D. L., and Weissburg, M. J. 2006. Clamming up: Environmental forces diminish the perceptive ability of bivalve prey. Ecology 87:1587–1598.

    PubMed  Google Scholar 

  • Stachowicz, J. J. 2001. Mutualism, facilitation, and the structure of ecological communities. Bioscience 51:235–246.

    Google Scholar 

  • Steinke, M., Stefels, J., and Stamhuis, E. 2006. Dimethyl sulfide triggers search behavior in copepods. Limnol. Oceanogr. 51:1925–1930.

    CAS  Google Scholar 

  • Strack, D., Fester, T., Hause, B., Schliemann, W., and Walter, M. H. 2003. Arbuscular mycorrhiza: biological, chemical, and molecular aspects. J. Chem. Ecol. 29:1955–1979.

    PubMed  CAS  Google Scholar 

  • Stuart, A. E., Borycz, J., and Meinertzhagen, I. A. 2007. The dynamics of signaling at the histamergic photoreceptor synapse of arthropods. Prog. Neurobiol. 82:202–227.

    PubMed  CAS  Google Scholar 

  • Sugata, Y., Okano, M., Fujiwara, T., Matsumoto, R., Hattori, H., Yamamoto, M., Nishibori, M., and Nishizaki, K. 2007. Histamine H4 receptor agonists have more activities than H4 agonism in antigen-specific human T-cell responses. Immunol. 121:266–275.

    CAS  Google Scholar 

  • Swanson, R. L., De nys, R., Huggett, M. J., Green, J. K., and Steinberg, P. D. 2006. In situ quantification of a natural settlement cue and recruitment of the Australian sea urchin Holopneustes purpurascens. Mar. Ecol. Prog. Ser. 314:1–14.

    Google Scholar 

  • Swanson, R. L., Williamson, J. E., De nys, R., Kumar, N., Bucknell, M. P., and Steinberg, P. D. 2004. Induction of settlement of larvae of the sea urchin Holopneustes purpurascens by histamine from a host alga. Biol. Bull. 206:161–172.

    PubMed  CAS  Google Scholar 

  • Tilman, D. 1999. The ecological consequences of changes in biodiversity: A search for general principles. Ecology 80:1455–1467.

    Google Scholar 

  • Toonen, R. J., and Pawlik, J. R. 1996. Settlement of the tube worm Hydroides dianthus (Polychaeta: Serpulidae): Cues for gregarious settlement. Mar. Biol. 126:725–733.

    Google Scholar 

  • Torto, B., Boucias, D. G., Arbogast, R. T., Tumlin, J. H., and Teal, P. E. 2007. Multitrophic interaction facilitates parasite–host relationship between an invasive beetle and the honey bee. Proc. Natl. Acad. Sci., USA 104:8374–8378.

    PubMed  CAS  Google Scholar 

  • Trigo, J. R., Brown, K. S. Jr., Witte, L., Hartmann, T., Ludger, L., and Barata, L. E. S. 1996. Pyrrolizidine alkaloids: Different acquisition and use patterns in Apocynaceae and Solanaceae feeding ithomiine butterflies (Lepidoptera: Nymphalidae). Bull. J. Linn. Soc. 58:99–123.

    Google Scholar 

  • Trott, T. J., and Robertson, J. R. 1984. Chemical stimulants of cheliped flexion behavior by the western Atlantic ghost crab, Ocypode quadrata (Fabricius). J. Exp. Mar. Biol. Ecol. 78:237–252.

    CAS  Google Scholar 

  • Trussell, G. C., Ewanchuk, P. J., and Bertness, M. D. 2002. Field evidence of trait-mediated indirect interactions in a rocky intertidal food web. Ecol. Lett. 5:241–245.

    Google Scholar 

  • Trussell, G. C., Ewanchuk, P. J., and Matassa, C. M. 2006. Habitat effects on the relative importance of trait- and density-mediated indirect interactions. Ecol. Lett. 9:1245–1252.

    PubMed  Google Scholar 

  • Velez, Z., Hubbard, P. C., Hardege, J., Barata, E. N., and Canaro, A. V. M. 2007. The contribution of amino acids to the odour of a prey species in the Senegalese sole (Solea senegalensis). Aquaculture 265:336–342.

    CAS  Google Scholar 

  • Vickers, N. J., and Baker, T. C. 1992. Male Heliothis virescens maintain upwind flight in response to experimentally pulsed filaments of their sex pheromone (Lepidoptera, Noctuidae). J. Insect Behav. 5:669–687.

    Google Scholar 

  • Vickers, N. J., and Baker, T. C. 1994. Reiterative responses to single strands of odor promote sustained upwind flight and odor source location by moths. Proc. Natl. Acad. Sci., USA 91:5756–5760.

    PubMed  CAS  Google Scholar 

  • Vickers, N. J., Christensen, T. A., Baker, T. C., and Hildebrand, J. G. 2001. Odour-plume dynamics influence the brain’s olfactory code. Nature 410:466–470.

    PubMed  CAS  Google Scholar 

  • Visser, A. W., and Jackson, G. A. 2004. Characteristics of the chemical plume behind a sinking particle in a turbulent water column. Mar. Ecol. Prog. Ser. 283:55–71.

    CAS  Google Scholar 

  • Von Frisch, K. 1941. Über einen Schreckstoff der Fischhaut and seine biologische Bedeutung. Z. vergl. Physiol. 29:46–145.

    Google Scholar 

  • Ward, G. E., Brokaw, C. J., Garbers, D. L., and Vacquier, V. D. 1985. Chemotaxis of Arbacia punctulata spermatozoa to resact, peptide from the egg jelly layer. J. Cell Biol. 101:2324–2329.

    PubMed  CAS  Google Scholar 

  • Webster, D. R., Rahman, S., and Dasi, L. P. 2003. Laser-induced fluorescence measurements of a turbulent plume. J. Engineer. Mechan.-ASCE 129:1130–1137.

    Google Scholar 

  • Weissburg, M. J. 2000. The fluid dynamical context of chemosensory behavior. Biol. Bull. 198:188–202.

    PubMed  CAS  Google Scholar 

  • Weissburg, M. J., and Zimmer-Faust, R. K. 1993. Life and death in moving fluids: Hydrodynamic effects on chemosensory-mediated predation. Ecology 74:1428–1443.

    Google Scholar 

  • Weissburg, M. J., and Zimmer-Faust, R. K. 1994. Odour plumes and how blue crabs use them in finding prey. J. Exp.Biol. 197:349–375.

    PubMed  CAS  Google Scholar 

  • Weller, S. J., Jacobson, N. L., and Conner, W. E. 1999. The evolution of chemical defenses and mating systems in tiger moths (Lepidoptera: Arctiidae). Biol. J. Linn. Soc. 68:557–578.

    Google Scholar 

  • Werner, E. E., and Peacor, S. D. 2003. A review of trait-mediated indirect interactions in ecological communities. Ecology 84:1083–1100.

    Google Scholar 

  • Winder, M., Spaak, P., and Mooij, W. M. 2004. Trade-offs in Daphnia habitat selection. Ecology 85:2027–2036.

    Google Scholar 

  • Wolfe, G. V. 2000. The chemical defense ecology of marine unicellular plankton: Constraints, mechanisms, and impacts. Biol. Bull. 198:225–244.

    PubMed  CAS  Google Scholar 

  • Wolfe, G. V., Steinke, M., and Kirst, G. O. 1997. Grazing-activated chemical defense in a unicellular alga. Nature 387:894–897.

    CAS  Google Scholar 

  • Yoshida, M., Murata, M., Inaba, K., and Morisawa, M. 2002. A chemoattractant for ascidian spermatozoa is a sulfonated steroid. Proc. Natl. Acad. Sci., USA 99:14831–14836.

    PubMed  CAS  Google Scholar 

  • Zimmer, R. K., and Butman, C. A. 2000. Chemical signaling processes in the marine environment. Biol. Bull. 198:168–187.

    PubMed  CAS  Google Scholar 

  • Zimmer, R. K., Commins, J. E., and Browne, K. A. 1999. Regulatory effects of environmental chemical signals on search behavior and foraging success. Ecology 80:1432–1446.

    Google Scholar 

  • Zimmer, R. K., and Ferrer, R. P. 2007. Neuroecology, chemical defense, and the keystone species concept. Biol. Bull. 213:208–225.

    PubMed  CAS  Google Scholar 

  • Zimmer-Faust, R. K., De Souza, M. P., and Yoch, D. C. 1996. Bacterial chemotaxis and its potential role in marine dimethylsulfide production and biogeochemical sulfur cycling. Limnol. Oceanogr. 41:1330–1334.

    CAS  Google Scholar 

  • Zimmer-Faust, R. K., Finelli, C. M., Pentcheff, N. D., and Wethey, D. S. 1995. Odor plumes and animal navigation in turbulent water flow: A field study. Biol. Bull. 188:111–116.

    Google Scholar 

  • Zimmer-Faust, R. K., Stanfill, J. M., and Collard, S. B. III. 1988. A fast, multi-channel fluorometer for investigating aquatic chemoreception and odor trails. Limnol. Oceanogr. 33:1586–1594.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. John Hildebrand and Jeff Riffell for their invitation to write this review, and Dr. Ken Sebens, Director, Friday Harbor Laboratories for graciously offering facilities, services and hospitality in making the work possible. Dr. Arthur Whiteley and The Helen Whiteley Foundation provided an exceptional academic environment for putting ideas into written words. This contribution was supported by awards from the National Science Foundation (OCE 02-42321), California Sea Grant (R/F-197), and the UCLA Council on Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard K. Zimmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmer, R.K., Zimmer, C.A. Dynamic Scaling in Chemical Ecology. J Chem Ecol 34, 822–836 (2008). https://doi.org/10.1007/s10886-008-9486-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-008-9486-3

Keywords

Navigation