Skip to main content
Log in

Honeybee (Apis cerana) Foraging Responses to the Toxic Honey of Tripterygium hypoglaucum (Celastraceae): Changing Threshold of Nectar Acceptability

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

To investigate honeybee foraging responses to toxic nectar, honey was collected from Apis cerana colonies in the Yaoan county of Yunnan Province, China, during June, when flowers of Tripterygium hypoglaucum were the main nectar source available. Pollen analysis confirmed the origin of the honey, and high-performance liquid chromatography showed the prominent component triptolide to be present at a concentration of 0.61 μg/g ± 0.11 SD. In cage tests that used young adult worker bees, significantly more of those provided with a diet of T. hypoglaucum honey mixed with sugar powder (1:1) died within 6 d (68.3%) compared to control groups provided with normal honey mixed with sugar powder (15.8%). Honeybees were trained to visit feeders that contained honey of T. hypoglaucum (toxic honey) as the test group and honey of Vicia sativa or Elsholtzia ciliata as control groups (all honeys diluted 1:3 with water). Bees preferred the feeders with normal honey to those with toxic honey, as shown by significantly higher visiting frequencies and longer imbibition times. However, when the feeder of normal honey was removed, leaving only honey of T. hypoglaucum, the foraging bees returned to the toxic honey after a few seconds of hesitation, and both visiting frequency and imbibition time increased to values previously recorded for normal honey. Toxic honey thus became acceptable to the bees in the absence of other nectar sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adler, L. S. 2000. The ecological significance of toxic nectar. Oikos 91:409–420.

    Article  Google Scholar 

  • Baker, H. G., and Baker, I. 1982. Chemical constituents of nectar in relation to pollination mechanisms and phylogeny, Biochemical Aspects of Evolutionary Biology. pp. 131–171, in M. H. Nitecki (ed.). University of Chicago Press, Chicago.

    Google Scholar 

  • Brinker, A. M., and Raskin, I. 2005. Determination of triptolide in root extracts of Tripterygium wilfordii by solid-phase extraction and reverse-phase high-performance liquid chromatography. J. Chromatogr. A 1070:65–70.

    Article  PubMed  CAS  Google Scholar 

  • Brinker, A. M., Ma, J., Lipsky, P. E., and Raskin, I. 2007. Medicinal chemistry and pharmacology of genus Tripterygium (Celastraceae). Phytochemistry 68:732–766.

    Article  PubMed  CAS  Google Scholar 

  • Detzel, A., and Wink, M. 1993. Attraction, deterrence or intoxication of bees (Apis mellifera) by plant allelochemicals. Chemoecology 4:8–18.

    Article  CAS  Google Scholar 

  • Gegear, R. J., Manson, J. S., and Thomson, J. D. 2007. Ecological context influences pollinator deterrence by alkaloids in floral nectar. Ecol. Lett. 10:375–382.

    Article  PubMed  Google Scholar 

  • Hagler, J. R., and Buchmann, S. L. 1993. Honey bee (Hymenoptera: Apidae) foraging responses to phenolic-rich nectars. J. Kans. Entomol. Soc. 66:223–230.

    Google Scholar 

  • Kessler, D., and Baldwin, I. T. 2006. Making sense of nectar scents: the effects of nectar secondary metabolites on floral visitors of Nicotiana attenuata. Plant J. 49:840–854.

    Article  Google Scholar 

  • Laska, M., Galizia, C. G., Giurfa, M., and Menzel, R. 1999. Olfactory discrimination ability and odor structure–activity relationships in honeybees. Chem. Senses 24:429–438.

    Article  PubMed  CAS  Google Scholar 

  • Lindauer, M. 1948. Uber die Einwirkung von Duft—und Geschmackstoffen sowie anderer Faktoren auf die Tänze der Bienen. Z. Vergleich. Physiol. 31:348–412.

    Article  Google Scholar 

  • Liu, F., Chen, J., Chai, J., Zhang, X., Bai, X., He, D., and Roubik, D. W. 2007. Adaptive functions of defensive plant phenolics and a non-linear bee response to nectar components. Funct. Ecol. 21:96–100.

    Article  Google Scholar 

  • Liu, F., He, J., and Fu, W. 2005. Highly controlled nest homeostasis of honey bees helps deactivate phenolics in nectar. Naturwissenschaften 92:297–299.

    Article  PubMed  CAS  Google Scholar 

  • London-Shafir, I., Shafir, S., and Eisikowitch, D. 2003. Amygdalin in almond nectar and pollen—facts and possible roles. Plant Syst. Evol. 238:87–95.

    Google Scholar 

  • Masters, A. R. 1991. Dual role of pyrrolizidine alkaloids in nectar. J. Chem. Ecol. 17:195–205.

    Article  CAS  Google Scholar 

  • Naef, R., Jaquier, A., Velluz, A., and Bachofen, B. 2004. From the linden flower to linden honey—volatile constituents of linden nectar, the extract of bee-stomach and ripe honey. Chem. Biodivers. 1:1870–1879.

    Article  PubMed  CAS  Google Scholar 

  • Nicolson, S. W., and Thornburg, R. T. 2007. Nectar chemistry, Nectaries and Nectar. pp. 215–264, in S.W. Nicolson, M. Nepi, and E. Pacini (eds.). Springer, Dordrecht.

    Chapter  Google Scholar 

  • Pham-Delegue, M. H., Blight, M. M., Kerguelen, V., Le Metayer, M., Marion-Poll, F., Sandoz, J. C., and Wadhams, L. J. 1997. Discrimination of oilseed rape volatiles by the honeybee: combined chemical and biological approaches. Entomol. Exp. Appl. 83:87–92.

    Article  CAS  Google Scholar 

  • Qiu, D., and Kao, P. N. 2003. Immunosuppressive and anti-inflammatory mechanisms of triptolide, the principal active diterpenoid from the Chinese Tripterygium wilfordii Hook. f. Drugs R&D 4:1–18.

    Article  CAS  Google Scholar 

  • Raguso, R. A. 2004. Why are some floral nectars scented? Ecology 85:1486–1494.

    Article  Google Scholar 

  • Raguso, R. A., and Pichersky, E. 1999. A day in the life of a linalool molecule: chemical communication in a plant–pollinator system. Part 1. Linalool biosynthesis in flowering plants. Plant Species Biol. 14:95–120.

    Article  Google Scholar 

  • Rhoades, D. F., and Bergdahl, J. C. 1981. Adaptive significance of toxic nectar. Am. Nat. 117:798–803.

    Article  Google Scholar 

  • Singaravelan, N., Inbar, M., Ne'eman, G., Distl, M., Wink, M., and Izhaki, I. 2006. The effects of nectar-nicotine on colony fitness of caged honeybees. J. Chem. Ecol. 32:49–58.

    Article  PubMed  CAS  Google Scholar 

  • Singaravelan, N., Nee'man, G., Inbar, M., and Izhaki, I. 2005. Feeding responses of free-flying honeybees to secondary compounds mimicking floral nectars. J. Chem. Ecol. 31:2791–2804.

    Article  PubMed  CAS  Google Scholar 

  • Sokal, R. R., and Rohlf, F. J. 1995. Biometry: the principles and practice of statistics in biological research. 3rd edn.W. H. Freeman, New York.

    Google Scholar 

  • Statsoft. 2006. STATISTICA, version 7.1. Available at: http://www.statsoft.com.

  • Stephenson, A. G. 1982. Iridoid glycosides in the nectar of Catalpa speciosa are unpalatable to nectar thieves. J. Chem. Ecol. 8:1025–1034.

    Article  CAS  Google Scholar 

  • Visscher, P. K., and Seeley, T. D. 1982. Foraging strategy of honeybee colonies in a temperate deciduous forest. Ecology 63:1790–1801.

    Article  Google Scholar 

  • Zhen, Q. S., Ye, X., and Wei, Z. J. 1995. Recent progress in research on Tripterygium: a male antifertility plant. Contraception 51:121–129.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was granted by the Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science and the Yunnan Agricultural University of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. W. Nicolson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, K., Guo, Y.H., Nicolson, S.W. et al. Honeybee (Apis cerana) Foraging Responses to the Toxic Honey of Tripterygium hypoglaucum (Celastraceae): Changing Threshold of Nectar Acceptability. J Chem Ecol 33, 2209–2217 (2007). https://doi.org/10.1007/s10886-007-9384-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-007-9384-0

Keywords

Navigation