Skip to main content
Log in

Byrsonic Acid—the Clue to Floral Mimicry Involving Oil-Producing Flowers and Oil-Collecting Bees

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Tetrapedia diversipes and other Apidae (Anthophoridae) may be deceived by floral similarities between Malpighiaceae and Orchidaceae of the Oncidiinae subtribe. The latter do not usually exudate floral oils. Thus, visitors may pollinate the flowers in a deceit/food/pollination syndrome. We studied the chemical compositions of Byrsonima intermedia (Malpighiaceae) floral oil and T. diversipes (Anthophoridae) cell provisions. From B. intermedia floral oil, we isolated a novel fatty acid (3R, 7R)-3,7-diacetoxy-docosanoic acid, here named byrsonic acid, and from T. diversipes cell provisions we isolated two novel fatty acid derivatives 3,7-dihydroxy-eicosanoic acid and 3,7-dihydroxy-docosanoic acid, here named tetrapedic acids A and B, respectively. The three fatty acid derivatives have common features: possess long chains (20 or 22 carbon atoms) with no double bond and either hydroxy or acetoxy groups at carbons 3 and 7. This characteristic was also encountered in the fatty acid moiety of oncidinol (2S, 3′R, 7′R)-1-acetyl-2-[3′, 7′-diacetoxyeicosanyl)-glycerol, a major floral oil constituent of several Oncidiinae species (Orchidaceae). Thus, both tetrapedic A (C20) and B (C22) could be the biotransformation products of oncidinol and byrsonic acid by T. diversipes hydrolases. These are the chemical clues for bee visitation and oil collecting from both plant species. The results indicate that the deceit/pollination syndrome should not be applied to all Oncidiinae flowers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alves-dos-Santos, I., Melo, G. A. R., and Rozen, J. G. 2002. Biology and immature stages of the bee tribe Tetrapediini (Hymenoptera:Apidae). Am. Mus. Novit. 337:1–45.

    Article  Google Scholar 

  • Dale, J. A. and Mosher, H. S. 1973. Nuclear Magnetic resonance enantiomer reagents. Configurational correlation via nuclear magnetic resonance chemical shifts of diastereomeric mandelate, O-methylmandelate and α-methoxy-a-trifluoromethylphenylacetate (MTPA) esters. J. Am. Chem. Soc. 95:512–519.

    Article  CAS  Google Scholar 

  • Duddeck, H. 1986. Substituent effects on 13C chemical shifts in aliphatic molecule systems. Dependence on constitution and stereochemistry. Topics in Stereochemistry. 16:219–234.

    Article  CAS  Google Scholar 

  • Neff, J. L. and Simpson, B. B. 1981. Oil-collecting structures in the Anthophoridae (Hymenoptera): morphology, function and use in systematics. J. Kans. Entomol. Soc. 54:95–123.

    Google Scholar 

  • Nierenberg, L. 1972. The mechanism for the maintenance of species integrity in sympatrically occurring equitant Oncidiums in the Caribbean. Am. Orchid Soc. Bull. 41:873–882.

    Google Scholar 

  • Ohtani, I., Kusumi, T., Kashman, Y., and Kakisawa, H. 1991. A new aspect of an advanced Mosher’s Method. Absolute configuration of marine triterpene Sipholenol-A. J. Am. Chem. Soc. 113:4092–4096.

    Article  CAS  Google Scholar 

  • Reis, M. G. 2005. Caracteres químicos em estudos de filogenia e biologia de polinização de Oncidiinae (Orchidadeceae). PhD dissertation. UNICAMP. Campinas.

  • Reis M. G., Faria, A. D., Bittrich, V., Amaral, M. C. E., and Marsaioli, A. J. 2000. The chemistry of flower rewards—Oncidium (Orchidaceae). J. Braz. Chem. Soc. 11:600–608.

    CAS  Google Scholar 

  • Reis M. G., Faria, A. D., Amaral, M. C. E., and Marsaioli, A. J. 2003. Oncidinol—a novel diacylglycerol from Ornithophora radicans Barb. Rodr. (Orchidaceae) floral oil. Tetrahedron Lett. 44:8519–8523.

    Article  CAS  Google Scholar 

  • Reis M. G., Singer, R. B. Gonçalves, R., Marsaioli, A. J. 2006. The chemical composition of the floral oils of Phymatidium delicatulum and Phymatidium tillandsioides (Orchidaceae). Natural Product Communication 1:757–761.

    CAS  Google Scholar 

  • Seigler, D., Simpson, B. B., Martin, C., and Neff, J. L. 1978. Free 3-acetoxy fatty acids in glands of Krameria species. Phytochemistry. 17:995–996.

    Article  CAS  Google Scholar 

  • Sigrist, M. R., and Sazima, M. 2004. Pollination and reproductive biology of twelve species of neotropical Malpighiaceae: Stigma morphologya and its implications for the breeding system. Ann. Bot. 94:33–41.

    Article  PubMed  Google Scholar 

  • Silvera, K. 2002. Adaptive Radiation of Oil-Reward Compounds among Neotropical Orchid Species (Oncidiinae). Master of Science Thesis. University of Florida.

  • Singer, R. B. 2003. Orchid pollination: recent developments from Brazil. Lankesteriana 7:111–114.

    Google Scholar 

  • Steiner, K. E. 1998. The evolution of beetle pollination in South African orchid. Am. J. Bot. 85:1180–1193.

    Article  Google Scholar 

  • Sullivan, G. R., Dale, J. A., and Mosher, H. S. 1973. Correlation of configuration and 19F chemical shifts of α-methoxy-α-trifluoromethylacetate derivatives. J. Org. Chem. 38:2143–2147.

    Article  CAS  Google Scholar 

  • Vinson, S. B., Williams, H. J., Frankie, G. W., and Shrum, G. 1997. Floral lipid chemistry of Byrsonima crassifolia (Malpigheaceae) and use of floral lipids by Centris bees (Hymenoptera: Apidae). Biotropica. 29:76–83.

    Article  Google Scholar 

  • Vinson, S. B., Frankie, G. W., and Williams, H. J. 2006. Nest liquid resources of several cavity nesting bees in the genus Centris and the identification of preservative, levulinic acid. J. Chem. Ecol. 32:2013–2021.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, S. 1969. Flowers Offering Fatty Oil Instead of Nectar. XI Proc. Int. Bot. Cong. Abstracts. Seattle, p. 229.

  • Vogel, S. 1974. Öblumen und Ölsammelnde Bienen. Akad. Wissenschaften Mainz. Wiesbaden: Franz Steiner. 544p

  • Whitten, M. Pollination Biology of Orchids. 2006. http://hort.ifas.ufl.edu/osc2006/whitten.pdf.

  • Whitten, W. M., Williams, N. H., and Chase, M. W. 2000. Subtribal and generic relationships of Maxillarieae (Orchidaceae) with emphasis on Stanhopeinae: Combined molecular evidence. Am. J. Bot. 87:1842–1856.

    Article  PubMed  CAS  Google Scholar 

  • Williams, N. H., Chase, M. W., Fulcher, T., and Whitten, W. M. 2001. Molecular systematics of the Oncidiinae based on evidence from DNA sequence regions: Expanded circumscriptions of Cyrtochilum, Erycina, Otoglossum, and Trichocetrum and a new genus (Orchidaceae). Lindleyana. 16:113–139.

    Google Scholar 

Download references

Acknowledgements

The authors are indebted to FAPESP (Fundação de Amparo a Pesquisa do Estado de São Paulo—grants #01/02794-7, #98/07781-6 and #03/06624-4) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnologia) for scholarships and financial support. The authors are also grateful to Vera Lúcia Imperatriz Fonseca and Sandra Regina Capelari Naxara of Universidade de São Paulo-USP for the Byrsonima intermedia flowers, and Carol Collins and Volker Bittrich for critical reading and text correction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita J. Marsaioli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reis, M.G., de Faria, A.D., dos Santos, I.A. et al. Byrsonic Acid—the Clue to Floral Mimicry Involving Oil-Producing Flowers and Oil-Collecting Bees. J Chem Ecol 33, 1421–1429 (2007). https://doi.org/10.1007/s10886-007-9309-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-007-9309-y

Keywords

Navigation