Skip to main content
Log in

Effectiveness of Metal–Metal and Metal–Organic Compound Combinations Against Plutella xylostella: Implications for Plant Elemental Defense

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Plants that contain elevated foliar metal concentrations can be categorized as accumulators or, if the accumulation is extreme, hyperaccumulators. The defense hypothesis suggests that these plants may be defended against folivore attack, and recent research has indicated that metal concentrations at or below the accumulator range may be defensively effective. This experiment explored the toxicity of four metals hyperaccumulated by plants (Cd, Ni, Pb, and Zn) and asked if combinations of metals, or metals and organic chemicals, might broaden the defensive effectiveness of metals. Metals were used alone and in certain metal + metal (Zn plus Ni, Pb, or Cd) and metal + organic defensive chemical (Ni plus tannic acid, atropine, or nicotine) combinations. Artificial diet amended with these treatments was fed to larvae of the crucifer specialist herbivore Plutella xylostella. Combinations of metals and metals + organic chemicals significantly decreased survival and pupation rates, compared to single treatments, for at least some concentrations in every experiment. Effects of combinations were additive rather than synergistic or antagonistic. Because Zn enhanced the toxicity of other metals and Ni enhanced the toxicity of organic defensive chemicals, our findings suggest that the defensive effects of metals are more widespread among plants than previously believed. They also support the hypothesis that herbivore defense may have led to the evolution of metal hyperaccumulation by increasing the preexisting defensive effects of metals at accumulator levels in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agrawal, A. A. 2000. Benefits and costs of induced plant defense for Lepidium virginicum (Brassicaceae). Ecology 81:1804–1813.

    Google Scholar 

  • Agrawal, A. A. 2005. Future directions in the study of induced plant responses to herbivory. Entomol. Exp. Appl. 115:97–105.

    Article  Google Scholar 

  • Baker, A. J. M. 1981. Accumulators and excluders—strategies in the response of plants to heavy metals. J. Plant Nutr. 3:634–654.

    Google Scholar 

  • Baker, A. J. M. and Brooks, R. R. 1989. Terrestrial plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126.

    CAS  Google Scholar 

  • Baker, A. J. M. and Brooks, R. R. 1994. The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour. Conserv. Recycl. 11:41–49.

    Article  Google Scholar 

  • Baker, A. J. M., MCGrath, S. P., Reeves, R. D., and Smith, J. A. C. 2000. Metal hyperaccumulator plants: A review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils, pp. 85–108, in N. Terry and G. S. Bañuelos (eds.). Phytoremediation of Contaminated Soil and Water. Lewis Publishers, Boca Raton.

    Google Scholar 

  • Behmer, S. T., Simpson, S. J., and Raubenheimer, D. 2002. Herbivore foraging in chemically heterogeneous environments: Nutrients and secondary metabolites. Ecology 83:2489–2501.

    Article  Google Scholar 

  • Borhidi, A. 2001. Phylogenetic trends in Ni-accumulating plants. S. Afr. J. Sci. 97:544–547.

    CAS  Google Scholar 

  • Boyd, R. S. 1998. Hyperaccumulation as a plant defensive strategy, pp. 181–201, in R. R. Brooks (ed.). Plants that Hyperaccumulate Heavy Metals. CAB International, Oxford, UK.

    Google Scholar 

  • Boyd, R. S. 2004. Ecology of metal hyperaccumulation. New Phytol. 162:563–567.

    Article  Google Scholar 

  • Boyd, R. S. and Martens, S. N. 1994. Nickel hyperaccumulated by Thlaspi montanum var. montanum is acutely toxic to an insect herbivore. Oikos 70:21–25.

    Article  CAS  Google Scholar 

  • Boyd, R. S. and Moar, W. J. 1999. The defensive function of Ni in plants: Response of the polyphagous herbivore Spodoptera exigua (Lepidoptera: Noctuidae) to hyperaccumulator and accumulator species of Streptanthus (Brassicaceae). Oecologia 118:218–224.

    Article  Google Scholar 

  • Boyd, R. S. and Shaw, J. J. 2004. Response of Xanthomonas campestris to metals: Implications for hyperaccumulation as a pathogen defense, pp. 279–282, in R. S. Boyd, A. J. M. Baker, and J. Proctor (eds.). Ultramafic Rocks: Their Soils, Vegetation and Fauna. Science Reviews Ltd., St Albans, Herts, UK.

    Google Scholar 

  • Brooks, R. R. 1987. Serpentine and Its Vegetation. Dioscorides Press, Portland.

    Google Scholar 

  • Brooks, R. R., Lee, J., Reeves, R. D., and Jaffré , T. 1977. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J. Geochem. Explor. 7:49–57.

    Article  CAS  Google Scholar 

  • Carpenter, J. E. and Bloem, S. 2002. Interaction between insect strain and artificial diet in diamondback moth development and reproduction. Entomol. Exp. Appl. 102:283–294.

    Article  CAS  Google Scholar 

  • Clausen, T. P., Reichardt, P. B., and Bryant, J. P. 1992. Condensed tannins in plant defense: A perspective on classical theories, pp. 639–652, in R. W. Hemingway and P. E. Laks (eds.). Plant Polyphenols: Synthesis, Properties, Significance. Plenum Press, New York.

    Google Scholar 

  • Coleman, C. M., Boyd, R. S., and Eubanks, M. D. 2005. Extending the elemental defense hypothesis: Dietary metal concentrations below hyperaccumulator levels could harm herbivores. J. Chem. Ecol. 31:1669–1681.

    Article  PubMed  CAS  Google Scholar 

  • Dyer, L. A., Dodson, C. D., Stireman, J. O., Tobler, M. A., Smilanich, A. M., Fincher, R. M., and Letourneau, D. K. 2003. Synergistic effects of three piper amides on generalist and specialist herbivores. J. Chem. Ecol. 29:2499–2514.

    Article  PubMed  CAS  Google Scholar 

  • Escarré , J., Lefèbvre, C., Gruber, W., Leblanc, M., Lepart, J., Rivière, Y., and Delay, B. 2000. Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area: Implications for phytoremediation. New Phytol. 145:429–437.

    Article  Google Scholar 

  • Feeny, P. 1976. Plant apparency and chemical defense. Recent Adv. Phytochem. 10:1–40.

    CAS  Google Scholar 

  • Gatehouse, J. A. 2002. Plant resistance towards insect herbivores: A dynamic interaction. New Phytol. 156:145–169.

    Article  CAS  Google Scholar 

  • Gómez, D., Azorón, J., Bastida, J., Viladomat, F., and Codina, C. 2003. Seasonal and spatial variations of alkaloids in Merendera montana in relation to chemical defense and phenology. J. Chem. Ecol. 29:1117–1126.

    Article  PubMed  Google Scholar 

  • Hanson, B. R., Lindblom, S. D., Loeffler, M. L., and Pilon-smits, E. A. H. 2004. Selenium protects plants from phloem-feeding aphids due to both deterrence and toxicity. New Phytol. 162:655–662.

    Article  CAS  Google Scholar 

  • Harvey, C. 2002. The effects of habitat complexity on biological control of herbivores and natural enemy interactions. MS Thesis, Auburn University, Alabama.

  • Hay, M. E. 1996. Defensive synergisms? Reply to Pennings. Ecology 77:1950–1952.

    Article  Google Scholar 

  • Hay, M. E., Kappel, Q. E., and Fenical, W. 1994. Synergisms in plant defenses against herbivores: Interactions of chemistry, calcification, and plant quality. Ecology 75:1714–1726.

    Article  Google Scholar 

  • Huitson, S. and Macnair, M. R. 2003. Does zinc protect the zinc hyperaccumulator Arabidopsis halleri from herbivory by snails? New Phytol. 159:453–459.

    Article  CAS  Google Scholar 

  • Iturralde, R. B. 2004. Notes on tropical American nickel accumulating plants, pp. 255–258, in R. S. Boyd, A. J. M. Baker, and J. Proctor (eds.). Ultramafic Rocks: Their Soils, Vegetation and Fauna. Science Reviews Ltd., St Albans, Herts, UK.

    Google Scholar 

  • Jhee, E. M., Dandridge, K. L., and Christy, JR., A. M., and Pollard, A. J. 1999. Selective herbivory on low-zinc phenotypes of the hyperaccumulator Thlaspi caerulescens (Brassicaceae). Chemoecology 9:93–95.

    Article  CAS  Google Scholar 

  • Jhee, E. M., Boyd, R. S., Eubanks, M. D., and Davis, M. A. 2005. Nickel hyperaccumulation by Streptanthus polygaloides protects against the folivore Plutella xylostella (Lepidoptera: Plutellidae). Plant Ecol. DOI 10.1007/s11258-005-9009-z.

  • Louda, S. and Mole, S. 1991. Glucosinolates: Chemistry and ecology, pp. 123–164, in G. A. Rosenthal and M. R. Berenbaum (eds.). Herbivores: Their Interactions with Secondary Plant Metabolites. Academic Press, Inc., San Diego.

    Google Scholar 

  • Macnair, M. R. 2003. The hyperaccumulation of metals by plants. Adv. Bot. Res. 40:63–105.

    Article  CAS  Google Scholar 

  • Martens, S. N. and Boyd, R. S. 1994. The ecological significance of nickel hyperaccumulation: A plant chemical defense. Oecologia 98:379–384.

    Article  Google Scholar 

  • Mcnaughton, S. J. and Tarrants, J. L. 1983. Grass leaf silicification: Natural selection for an inducible defense against herbivores. Proc. Natl. Acad. Sci. U.S.A. 80:790–791.

    Article  PubMed  Google Scholar 

  • Meerts, P. and van Isacker, N. 1997. Heavy metal tolerance and accumulation in metallicolous and non-metallicolous populations of Thlaspi caerulescens from continental Europe. Plant Ecol. 133:221–231.

    Article  Google Scholar 

  • Mesjasz-przybylowicz, J. and Przybylowicz, W. J. 2001. Phytophagous insects associated with the Ni-hyperaccumulating plant Berkheya coddii (Asteraceae) in Mpumalanga, South Africa. S. Afr. J. Sci. 97:596–598.

    CAS  Google Scholar 

  • Muller, J. L. 1998. Love potions and the ointment of witches: Historical aspects of nightshade alkaloids. J. Toxicol., Clin. Toxicol. 36:617–627.

    Article  CAS  Google Scholar 

  • Nelson, A. C. and Kursar, T. A. 1999. Interactions among plant defense compounds: A method for analysis. Chemoecology 9:81–92.

    Article  CAS  Google Scholar 

  • Noret, N., Meerts, P., Tolrà, R., Poschenrieder, C., Barceló, J., and Escarré, J. 2005. Palatability of Thlaspi caerulescens for snails: influence of zinc and glucosinolates. New Phytol. 165:763–772.

    Article  PubMed  CAS  Google Scholar 

  • Pennings, S. C. 1996. Testing for synergisms between chemical and mineral defenses—a comment. Ecology 77:1948–1950.

    Article  Google Scholar 

  • Pollard, A. J. and Baker, A. J. M. 1997. Deterrence of herbivory by zinc hyperaccumulation in Thlaspi caerulescens (Brassicaceae). New Phytol. 135:655–658.

    Article  CAS  Google Scholar 

  • Reeves, R. D. and Baker, A. J. M. 1984. Studies on metal uptake by plants from serpentine and non- serpentine populations of Thlaspi goesingense Halacsy (Cruciferae). New Phytol. 98:191–204.

    Article  CAS  Google Scholar 

  • Reeves, R. D. and Baker, A. J. M. 2000. Metal-accumulating plants, pp. 193–229, in I. Raskin and B. D. Ensley (eds.). Phytoremediation of Toxic Metals. Wiley, New York.

    Google Scholar 

  • Reeves, R. D. and Brooks, R. R. 1983. Hyperaccumulation of lead and zinc by two metallophytes from mining areas of Central Europe. Environ. Pollut. A 31:277–285.

    Article  CAS  Google Scholar 

  • Reeves, R. D., Brooks, R. R., and Macfarlane, R. M. 1981. Nickel uptake by Californian Streptanthus and Caulanthus with particular reference to the hyperaccumulator S. polygaloides Gray (Brassicaceae). Am. J. Bot. 68:708–712.

    Article  CAS  Google Scholar 

  • Rhoades, D. F. 1979. Evolution of plant chemical defense against herbivores, pp. 1–55, in G.A. Rosenthal and D.H. Janzen (eds.). Herbivores: Their Interaction with Secondary Plant Metabolites. Academic Press, New York.

    Google Scholar 

  • Rhoades, D. F. and Cates, R. G. 1976. Toward a general theory of plant antiherbivore chemistry. Recent Adv. Phytochem. 10:168–213.

    CAS  Google Scholar 

  • Salama, H. S., Foda, M. S., Zaki, F. N., and Moawad, S. 1984. Potency of combinations of Bacillus thuringiensis and chemical insecticides on Spodoptera littoralis (Lepidoptera: Noctuidae). J. Econ. Entomol. 77:885–890.

    CAS  Google Scholar 

  • SAS Institute. 2005. JMP in 5.1. Thomson–Brooks/Cole, Belmont.

    Google Scholar 

  • Schultz, J. C. 1988. Tannin–insect interactions, pp. 621–638, in R.W. Hemingway and J.J. Karchesy (eds.). Chemistry and Significance of Condensed Tannins. Plenum Press, New York.

    Google Scholar 

  • Shelton, A. M. and Collins, H. L. 2000. Techniques for rearing Plutella xylostella at N.Y.S. Agricultural Experiment Station Geneva, New York. Shelton Lab, Cornell University's New York State Agricultural Research Station, Geneva.

    Google Scholar 

  • Talekar, N. S. and Shelton, A. M. 1993. Biology, ecology, and management of the diamondback moth. Annu. Rev. Entomol. 38:275–301.

    Article  Google Scholar 

  • Tolrà , R. O., Poschenrieder, C., Alonso, R., Barceló, D., and Barceló, J. 2001. Influence of zinc hyperaccumulation on glucosinolates in Thlaspi caerulescens. New Phytol. 151:621–626.

    Article  Google Scholar 

  • Twigg, L. E. and King, D. R. 1991. The impact of fluoroacetate-bearing vegetation on native Australian fauna: A review. Oikos 61:412–430.

    Article  CAS  Google Scholar 

  • Wall, M. A. and Boyd, R. S. 2002. Nickel accumulation in serpentine arthropods from the Red Hills, California. Pan-Pac. Entomol. 78:168–176.

    Google Scholar 

  • Weimin, L., Schuler, M. A., and Berenbaum, M. R. 2003. Diversification of furanocoumarin-metabolizing cytochrome P450 monooxygenases in two papilionids: Specificity and substrate encounter rate. Proc. Natl. Acad. Sci. U.S.A. 100:14593–14598.

    Article  CAS  Google Scholar 

  • Yildiz, D. 2004. Nicotine, its metabolism and an overview of its biological effects. Toxicon 43:619–632.

    Article  PubMed  CAS  Google Scholar 

  • Zar, J. H. 1996. Biostatistical Analysis. Prentice-Hall, Englewood Cliffs.

    Google Scholar 

Download references

Acknowledgments

The authors thank Rachel Foster for invaluable assistance with artificial diet experiments, Michael Buckman and Zandra Delamar for assistance with DBM colony maintenance, and Dr. John Odom for assistance with ICP analysis. The authors thank Dr. Debbie Folkerts and two anonymous reviewers for critically reviewing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Boyd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jhee, E.M., Boyd, R.S. & Eubanks, M.D. Effectiveness of Metal–Metal and Metal–Organic Compound Combinations Against Plutella xylostella: Implications for Plant Elemental Defense. J Chem Ecol 32, 239–259 (2006). https://doi.org/10.1007/s10886-005-9000-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-005-9000-0

Key Words

Navigation