Skip to main content
Log in

Double Hopf Bifurcation in Delayed reaction–diffusion Systems

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

Double Hopf bifurcation analysis can be used to reveal some complicated dynamical behavior in a dynamical system, such as the existence or coexistence of periodic orbits, quasi-periodic orbits, or even chaos. In this paper, an algorithm for deriving the normal form near a codimension-two double Hopf bifurcation of a reaction–diffusion system with time delay and Neumann boundary condition is rigorously established, by employing the center manifold reduction technique and the normal form method. The dynamical behavior near bifurcation points are proved to be governed by twelve distinct unfolding systems. Two examples are performed to illustrate our results: for a stage-structured epidemic model, we find that double Hopf bifurcation appears when varying the diffusion rate and time delay, and two stable spatially inhomogeneous periodic oscillations are proved to coexist near the bifurcation point; in a diffusive Predator–Prey system, we theoretically proved that quasi-periodic orbits exist on two- or three-torus near a double Hopf bifurcation point, which will break down after slight perturbation, leaving the system a strange attractor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. An, Q., Jiang, W: Spatiotemporal attractors generated by the Turing-Hopf bifurcation in a time-delayed reaction-diffusion system. Disctete Cont. Dyn-B. https://doi.org/10.3934/dcdsb.2018183 (2018)

  2. Andronov, A.A.: Application of Poincaré theorem on bifurcation points and change in stability to simple auto-oscillatory systems. C. R. Acad. Sci. Paris 189, 559–561 (1929)

    Google Scholar 

  3. Bajaj, A.K., Sethna, P.R.: Bifurcations in three-dimensional motions of articulated tubes. I—Linear systems and symmetry. II—Nonlinear analysis. J. Appl. Mech 49, 606–618 (1982)

    Google Scholar 

  4. Battelino, P.M., Grebogi, C., Ott, E., Yorke, J.A.: Chaotic attractors on a 3-torus, and torus break-up. Physica D 39, 299–314 (1989)

    Google Scholar 

  5. Baurmann, M., Gross, T., Feudel, U.: Instabilities in spatially extended predator–prey systems: spatio-temporal patterns in the neighborhood of Turing–Hopf bifurcations. J. Theor. Bio. 245, 220–229 (2007)

    Google Scholar 

  6. Belair, J., Campbell, S.A., Driessche, P.V.D.: Frustration, stability, and delay-induced oscillations in a neural network model. SIAM. J. Appl. Math. 56, 245–255 (1996)

    Google Scholar 

  7. Bi, P., Ruan, S.: Bifurcations in delay differential equations and applications to tumor and immune system interaction models. SIAM J. Appl. Dyn. Syst. 12, 1847–1888 (2013)

    Google Scholar 

  8. Buono, P.L., Bélair, J.: Restrictions and unfolding of double Hopf bifurcation in functional differential equations. J. Differ. Equ. 189, 234–266 (2003)

    Google Scholar 

  9. Campell, S.A., Bélair, J.: Analytical and symbolically-assisted investigation of Hopf bifurcations in delay-differential equations. Can. Appl. Math. Q. 3, 137–154 (1995)

    Google Scholar 

  10. Campell, S.A., Bélair, J., Ohira, T., Milton, J.: Limit cycles, tori, and complex dynamics in a second-order differential equations with delayed negative feedback. J. Dyn. Differ. Equ. 7, 213–236 (1995)

    Google Scholar 

  11. Campell, S.A., LeBlanc, V.G.: Resonant Hopf–Hopf interaction in delay differential equations. J. Dyn. Differ. Equ. 10, 327–346 (1998)

    Google Scholar 

  12. Chen, S., Shi, J., Wei, J.: Global stability and Hopf bifurcation in a delayed diffusive Leslie–Gower predator–prey system. Int. J. Bifurcat. Chaos 22, 331–517 (2012)

    Google Scholar 

  13. Chen, S., Yu, J.: Stability and bifurcations in a nonlocal delayed reaction–diffusion population model. J. Differ. Equations 260, 218–240 (2016)

    Google Scholar 

  14. De Wit, A., Dewel, G., Borckmans, P.: Chaotic Turing–Hopf mixed mode. Phys. Rev. E 48, R4191–R4194 (1993)

    Google Scholar 

  15. Du, Y., Guo, Y., Xiao, P.: Freely-moving delay induces periodic oscillations in a structured SEIR model. Int. J. Bifurcat. Chaos 27, 1750122 (2017)

    Google Scholar 

  16. Eckmann, J.P.: Roads to turbulence in dissipative dynamical systems. Rev. Modern Phys. 53, 643–654 (1981)

    Google Scholar 

  17. Elphick, C., Tiraopegui, E., Brachet, M.E., Coullet, P., Iooss, G.: A simple global characterization for normal forms of singular vector fields. Physica D 29, 95–127 (1987)

    Google Scholar 

  18. Faria, T.: Normal forms and Hopf bifurcation for partial differential equations with delays. Trans. Am. Math. Soc. 352, 2217–2238 (2000)

    Google Scholar 

  19. Faria, T.: Stability and bifurcation for a delayed predator–prey model and the effect of diffusion. J. Math. Anal. Appl. 254, 433–463 (2001)

    Google Scholar 

  20. Faria, T., Huang, W.: Stability of periodic solutions arising from Hopf bifurcation for a reaction–diffusion equation with time delay. Fields Inst. Commun. 31, 125–141 (2002)

    Google Scholar 

  21. Faria, T., Magalhães, L.T.: Normal forms for retarded functional differential equations with parameters and applications to Hopf bifurcation. J. Differ. Equ. 122, 181–200 (1995)

    Google Scholar 

  22. Faria, T., Magalhães, L.T.: Normal form for retarded functional differential equations and applications to Bogdanov–Takens singularity. J. Differ. Equ. 122, 201–224 (1995)

    Google Scholar 

  23. Gils, S.A.V., Krupa, M., Langford, W.F.: Hopf bifurcation with non-semisimple 1:1 resonance. Nonlinearity 3, 825–850 (1990)

    Google Scholar 

  24. Govaerts, W., Guckenheimer, J., Khibnik, A.: Defining functions for multiple Hopf bifurcations. SIAM J. Numer. Anal. 34, 1269–1288 (1997)

    Google Scholar 

  25. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

    Google Scholar 

  26. Guo, S.: Stability and bifurcation in a reaction–diffusion model with nonlocal delay effect. J. Differ. Equ. 259, 1409–1448 (2015)

    Google Scholar 

  27. Guo, S., Ma, L.: Stability and bifurcation in a delayed reaction–diffusion equation with Dirichlet boundary condition. J. Nonlinear Sci. 26, 545–580 (2016)

    Google Scholar 

  28. Hale, J.K., Kocak, H.: Dynamics and Bifurcations. Springer, New York (1991)

    Google Scholar 

  29. Hale, J.K., Lunel, S.M.V.: Introduction to Functional Differential Equations. Springer, New York (1993)

    Google Scholar 

  30. Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, New York (1981)

    Google Scholar 

  31. Hethcote, H.W., Lewis, M.A., Driessche, P.V.D.: An epidemiological model with a delay and a nonlinear incidence rate. J. Math. Biol. 27, 49–64 (1989)

    Google Scholar 

  32. Hopf, E.: Abzweigung einer periodischen lösung eines differential systems. Berichen Math. Phys. Kl. Säch. Akad. Wiss. Leipzig 94, 1–22 (1942)

    Google Scholar 

  33. Hsu, S.B., Huang, T.W.: Global stability for a class of predator–prey systems. SIAM J. Appl. Math. 55, 763–783 (1995)

    Google Scholar 

  34. Ji, J., Li, X., Luo, Z.: Two-to-one resonant Hopf bifurcations in a quadratically nonlinear oscillator involving time delay. Int. J. Bifurcat. Chaos 22, 1250060 (2012)

    Google Scholar 

  35. Kielhöfer, H.: Bifurcation Theory: An Introduction with Applications to Partial Differential Equations. Springer, New York (2011)

    Google Scholar 

  36. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. Springer, New York (2011)

    Google Scholar 

  37. Lewis, G.M., Nagata, W.: Double Hopf bifurcations in the differentially heated rotating annulus. SIAM J. Appl. Math. 63, 1029–1055 (2003)

    Google Scholar 

  38. Lin, X., So, J.W.H., Wu, J.: Centre manifolds for partial differential equations with delays. P. Roy. Soc. Edinb. A 122, 237–254 (1992)

    Google Scholar 

  39. Luongo, A., Paolone, A.: Perturbation methods for bifurcation analysis from multiple nonresonant complex eigenvalues. Nonlinear Dyn. 14, 193–210 (1997)

    Google Scholar 

  40. Ma, S., Lu, Q., Feng, Z.: Double Hopf bifurcation for van der Pol–Duffing oscillator with parametric delay feedback control. J. Math. Anal. Appl. 338, 993–1007 (2008)

    Google Scholar 

  41. Meixner, M., De Wit, A., Bose, S., Schöll, E.: Generic spatiotemporal dynamics near codimension-two Turing–Hopf bifurcations. Phys. Rev. E 55, 6690–6697 (1997)

    Google Scholar 

  42. Poincaré, H.: Les Méthodes Nouvelles de la Mécanique Céleste. Cauthier-Villars, Paris (1892)

    Google Scholar 

  43. Reddy, D.V.R., Sen, A., Johnston, G.L.: Time delay effects on coupled limit cycle oscillators at Hopf bifurcation. Physica D 129, 15–34 (1999)

    Google Scholar 

  44. Revel, G., Alonso, D.M., Moiola, J.L.: Interactions between oscillatory modes near a 2:3 resonant Hopf–Hopf bifurcation. Chaos 20, 113–129 (2010)

    Google Scholar 

  45. Revel, G., Alonso, D.M., Moiola, J.L.: Numerical semi-global analysis of a 1:2 resonant Hopf–Hopf bifurcation. Physica D 247, 40–53 (2013)

    Google Scholar 

  46. Ruan, S., Xiao, D.: Global analysis in a predator–prey system with nonmonotonic functional response. SIAM J. Appl. Math. 61, 1445–1472 (2000)

    Google Scholar 

  47. Ruelle, D., Takens, F.: On the nature of turbulence. Commun. Math. Phys. 20, 167–192 (1971)

    Google Scholar 

  48. Song, Y., Wei, J.: Local Hopf bifurcation and global periodic solutions in a delayed predator–prey system. J. Math. Anal. Appl. 301, 1–21 (2005)

    Google Scholar 

  49. Song, Y., Zhang, T., Peng, Y.: Turing–Hopf bifurcation in the reaction–diffusion equations and its applications. Commun. Nonlinear Sci. Numer. Simul. 33, 229–258 (2016)

    Google Scholar 

  50. Steen, P.H., Davis, S.H.: Quasiperiodic bifurcation in nonlinearly-coupled oscillators near a point of strong resonance. SIAM J. Appl. Math. 42, 1345–1368 (1982)

    Google Scholar 

  51. Su, Y., Wei, J., Shi, J.: Hopf bifurcations in a reaction–diffusion population model with delay effect. J. Differ. Equ. 247, 1156–1184 (2009)

    Google Scholar 

  52. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, New York (2003)

    Google Scholar 

  53. Wu, J.: Theory and Applications of Partial Functional-Differential Equations. Springer, New York (1996)

    Google Scholar 

  54. Xiao, D.: Bifurcations of a ratio-dependent predator–prey system with constant rate harvesting. SIAM J. Appl. Math. 65, 737–753 (2005)

    Google Scholar 

  55. Xiao, Y., Chen, L.: An SIS epidemic model with stage structure and a delay. Acta Math. Appl. Sin. E. 18, 607–618 (2002)

    Google Scholar 

  56. Xu, X., Wei, J.: Turing–Hopf bifurcation of a class of modified Leslie–Gower model with diffusion. Discrete Continuous Dyn. Syst. Ser. B 23, 765–783 (2018)

    Google Scholar 

  57. Yan, X., Li, W.: Stability of bifurcating periodic solutions in a delayed reaction–diffusion population model. Nonlinearity 23, 1413–1431 (2010)

    Google Scholar 

  58. Yi, F., Wei, J., Shi, J.: Bifurcation and spatiotemporal patterns in a homogenous diffusive predator–prey system. J. Differ. Equ. 246, 1944–1977 (2009)

    Google Scholar 

  59. Yu, P.: Analysis on double Hopf bifurcation using computer algebra with the aid of multiple scales. Nonlinear Dyn. 27, 19–53 (2002)

    Google Scholar 

  60. Yu, P., Bi, Q.: Analysis of non-linear dynamics and bifurcations of a double pendulum. J. Sound Vib. 217, 691–736 (1998)

    Google Scholar 

  61. Yu, P., Yuan, Y., Xu, J.: Study of double Hopf bifurcation and chaos for oscillator with time delay feedback. Commun. Nonlinear Sci. Numer. Simul. 7, 69–91 (2002)

    Google Scholar 

  62. Zhang, Y., Xu, J.: Classification and computation of non-resonant double Hopf bifurcations and solutions in delayed van der Pol–Duffing system. Int. J. Nonlinear Sci. Numer. Simul. 6, 67–74 (2005)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the handling editor and anonymous referees for their careful reading of the manuscript and valuable comments, which improve the exposition of the paper very much. This research is supported by National Natural Science Foundation of China (11701120, 11771109) and Shaanxi Provincial Education Department Grant (18JK0123).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Niu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Niu, B., Guo, Y. et al. Double Hopf Bifurcation in Delayed reaction–diffusion Systems. J Dyn Diff Equat 32, 313–358 (2020). https://doi.org/10.1007/s10884-018-9725-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-018-9725-4

Keywords

Mathematics Subject Classification

Navigation