Skip to main content

Advertisement

Log in

Intraoperative flash VEPs are reproducible in the presence of low amplitude EEG

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Flash visual evoked potentials (FVEPs) are often irreproducible during surgery. We assessed the relationship between intraoperative FVEP reproducibility and EEG amplitude. Left then right eyes were stimulated by goggle light emitting diodes, and FVEPs were recorded from Oz–Fz′ (International 10-20 system) in 12 patients. Low cut filters were ≤5 Hz in all patients; two patients also had recordings using 10 and 30 Hz. The reproducibility of FVEP and the amplitude of the concomitant EEG from C4′–Fz were measured. Nine patients had low amplitude EEG (<30 μV); reproducible FVEPs were obtained from all eyes with normal pre-operative vision. The other three patients had high amplitude EEG (>50 μV); FVEPs were absent from three of four eyes with normal pre-operative vision (the other normal eye had a present but irreproducible FVEP). Raising the low cut filter to 10 and 30 Hz (in two patients) progressively reduced EEG and FVEP amplitude, reduced amplifier blocking time and improved FVEP reproducibility. FVEPs were more reproducible in the presence of low amplitude EEG than high amplitude EEG. This is the first report describing the effect of EEG amplitude on FVEP reproducibility during surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Toleikis SC, Toleikis JR. VEP. In: Koht A, Sloan TB, Toleikis JR, editors. Monitoring the nervous system for anesthesiologists and other health care professionals. New York: Springer; 2012. p. 69–93.

    Chapter  Google Scholar 

  2. Cedzich C, Schramm J. Monitoring of flash visual evoked potentials during neurosurgical operations. Int Anesthesiol Clin. 1990;28(3):165–9.

    Article  CAS  PubMed  Google Scholar 

  3. Wiedemayer H, Fauser B, Armbruster W, Gasser T, Stolke D. Visual evoked potentials for intraoperative monitoring using total intravenous anesthetic. J Neurosurg Anesthesiol. 2003;15:19–24.

    Article  PubMed  Google Scholar 

  4. Sebel PS, Intram DA, Flynn PJ, Rutherford CF, Rogers H. Evoked potentials during isoflurane anesthesia. Br J Anaesth. 1986;58:580–5.

    Article  CAS  PubMed  Google Scholar 

  5. Cedzich C, Schramm J, Fahlbusch R. Are flash-evoked visual potentials useful for intraoperative monitoring of visual pathway function? Neurosurgery. 1987;21:709–15.

    Article  CAS  PubMed  Google Scholar 

  6. American Electroencephalographic Society guidelines for intraoperative monitoring of sensory evoked potentials. J Clin Neurophysiol. 1987;4(4):397–416.

    Google Scholar 

  7. American Clinical Neurophysiology Society. Guideline 9B. Guidelines on visual evoked potentials. J Clin Neurophysiol. 2006;23(2):138–56.

    Article  Google Scholar 

  8. Odom FV, Bach M, Brigell M, Holder GE, McCulloch DL, Tormene AP, Vaegan. ISCEV standard for clinical visual evoked potentials (2009 update). Doc Ophthalmol. 2010;120:111–9.

    Article  PubMed  Google Scholar 

  9. Tinker JH, Sharbrough FW, Michenfelder JD. Anterior shift of the dominant EEG rhythm during anesthesia in the java monkey: correlation with anesthetic potency. Anesthesiology. 1977;46:252–9.

    Article  CAS  PubMed  Google Scholar 

  10. Rampil IJ, Lockhart SH, Eger EI II, Yasuda N, Weiskopf RB, Cahalan MK. The electroencephalographic effects of desflurane in humans. Anesthesiology. 1991;74:434–9.

    Article  CAS  PubMed  Google Scholar 

  11. Murphy M, Bruno MA, Riedner BA, et al. Propofol anaesthesia and sleep: a high-density EEG study. Sleep. 2011;34(3):283–91.

    PubMed Central  PubMed  Google Scholar 

  12. Kodama K, Goto T, Sato A, Sakai K, Tanaka Y, Hongo K. Standard and limitation of intraoperative monitoring of the visual evoked potential. Acta Neurochir. 2010;152:643–8.

    Article  PubMed  Google Scholar 

  13. Sasaki T, Itakura T, Suzuki K, et al. Intraoperative monitoring of visual evoked potential: introduction of a clinically useful method. J Neurosurg. 2010;112:273–84.

    Article  PubMed  Google Scholar 

  14. Cohen BA, Baldwin ME. Visual-evoked potentials for intraoperative neurophysiology monitoring: another flash in the pan? J Clin Neurophysiol. 2011;28(6):599–601.

    Article  PubMed  Google Scholar 

  15. Nuwer MR, Dawson EG. Intraoperative evoked potential monitoring of the spinal cord. A restricted filter, scalp method during Harrington instrumentation for scoliosis. Clin Orthop. 1984;183:42–50.

    PubMed  Google Scholar 

  16. American Clinical Neurophysiology Society. Guideline 11B (2009). Guidelines for intraoperative monitoring of sensory evoked potential. ACNS web site. www.acns.org/pdf/guidelines/Guideline-11B.pdf.

  17. American Clinical Neurophysiology Society. Guideline 9D. Guidelines on short latency somatosensory evoked potentials. J Clin Neurophysiol. 2006;23(2):168–79.

    Article  Google Scholar 

  18. Banoub M, Tetzlaff JE, Schubert A. Pharmacologic and physiologic influences affecting sensory evoked potentials: implications for perioperative monitoring. Anesthesiology. 2003;99(3):716–37.

    Article  PubMed  Google Scholar 

  19. Huotari AM, Koskinen M, Suominen K, Alahuhta S, Remes R, Hartikainen KM, Jäntti V. Evoked EEG patterns during burst suppression with propofol. Br J Anaesth. 2004;92(1):18–24.

    Article  CAS  PubMed  Google Scholar 

  20. Chi OZ, McCoy CL, Field C. Effects of fentanyl anesthesia on visual evoked potentials in humans. Anesthesiology. 1987;67(5):827–30.

    Article  CAS  PubMed  Google Scholar 

  21. You Y, Thie J, Klistorner A, Gupta VK, Graham SL. Normalization of visual evoked potentials using underlying electroencephalogram levels improves amplitude reproducibility in rats. IOVS. 2012;53(3):1473–8.

    Google Scholar 

  22. Zaarour C, Engelhardt T, Strantzas S, Pehora C, Lewis S, Crawford MW. Effect of low-dose ketamine on voltage requirement for transcranial electrical motor evoked potentials in children. Spine. 2007;32(22):E627–30.

    Article  PubMed  Google Scholar 

  23. Skuse NF, Burke D. Power spectrum and optimal filtering for visual evoked potentials to pattern reversal. Electroencephalogr Clin Neurophysiol. 1990;77:199–204.

    Article  CAS  PubMed  Google Scholar 

  24. Shaw NA. The effects of low-pass filtering on the flash visual evoked potential of the albino rat. J Neurosci Methods. 1992;44:233–40.

    Article  CAS  PubMed  Google Scholar 

  25. Ota T, Kawai K, Kamada K, Kin T, Saito N. Intraoperative monitoring of cortically recorded visual response for posterior visual pathway. J Neurosurg. 2010;112:285–94.

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

The authors have no conflict of interest and the FVEP studies were performed according to current Canadian laws.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Houlden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Houlden, D.A., Turgeon, C.A., Polis, T. et al. Intraoperative flash VEPs are reproducible in the presence of low amplitude EEG. J Clin Monit Comput 28, 275–285 (2014). https://doi.org/10.1007/s10877-013-9532-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-013-9532-8

Keywords

Navigation