Skip to main content
Log in

Evaluation of techniques for estimating the power spectral density of RR-intervals under paced respiration conditions

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Heart rate variability (HRV) analysis is increasingly used in anaesthesia and intensive care monitoring of spontaneous breathing and mechanical ventilated patients. In the frequency domain, different estimation methods of the power spectral density (PSD) of RR-intervals lead to different results. Therefore, we investigated the PSD estimates of fast Fourier transform (FFT), autoregressive modeling (AR) and Lomb–Scargle periodogram (LSP) for 25 young healthy subjects subjected to metronomic breathing. The optimum method for determination of HRV spectral parameters under paced respiration was identified by evaluating the relative error (RE) and the root mean square relative error (RMSRE) for each breathing frequency (BF) and spectral estimation method. Additionally, the sympathovagal balance was investigated by calculating the low frequency/high frequency (LF/HF) ratio. Above 7 breaths per minute, all methods showed a significant increase in LF/HF ratio with increasing BF. On average, the RMSRE of FFT was lower than for LSP and AR. Therefore, under paced respiration conditions, estimating RR-interval PSD using FFT is recommend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Akaike H. A new look at the statistical model identification. IEEE Trans Autom Control. 1974; 19(6):716–723.

    Article  Google Scholar 

  2. Badilini F, Maison-Blanche P, Coumel P. Heart rate variability in passive tilt test: comparative evaluation of autoregressive and fft spectral analyses. Pacing Clin Electrophysiol. 1998; 21(5):1122–1132.

    Article  PubMed  CAS  Google Scholar 

  3. Bernardi L, Porta C, Gabutti A, Spicuzza L, Sleight P. Modulatory effects of respiration. Auton Neurosc. 2001;90(1–2):47–56.

    Article  PubMed  CAS  Google Scholar 

  4. Boardman A, Schlindwein FS, Rocha AP, Leite A. A study on the optimum order of autoregressive models for heart rate variability. Physiol Meas. 2002;23(2):325.

    Article  PubMed  Google Scholar 

  5. Brown TE, Beightol LA, Koh J, Eckberg DL. Important influence of respiration on human r–r interval power spectra is largely ignored. J Appl Physiol. 1993;75(5):2310–7.

    PubMed  CAS  Google Scholar 

  6. Clayton R, Lord S, McComb J, Murray A. Comparison of autoregressive and fourier transform based techniques for estimating rr interval spectra. In: Computers in cardiology; 1997. p. 379–82.

  7. Clifford G, Tarassenko L. Quantifying errors in spectral estimates of HRV due to beat replacement and resampling. IEEE Trans Biomed Eng. 2005;52(4):630–8.

    Article  PubMed  Google Scholar 

  8. Cohen MA, Taylor JA. Short-term cardiovascular oscillations in man: measuring and modelling the physiologies. J Physiol. 2002;542(3):669–83.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Eckberg DL. Point:counterpoint: respiratory sinus arrhythmia is due to a central mechanism vs. respiratory sinus arrhythmia is due to the baroreflex mechanism. J Appl Physiol. 2009;106(5):1740–2.

    Article  PubMed  Google Scholar 

  10. Hirsch JA, Bishop B. Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate. Am J Physiol Heart Circ Physiol. 1981;241(4):H620–9.

    CAS  Google Scholar 

  11. Jeanne M, Clement C, De Jonckheere J, Logier R, Tavernier B. Variations of the analgesia nociception index during general anaesthesia for laparoscopic abdominal surgery. J Clin Monit Comput. 2012;26:289–94.

    Article  PubMed  CAS  Google Scholar 

  12. Karemaker JM. Counterpoint: respiratory sinus arrhythmia is due to the baroreflex mechanism. J Appl Physiol. 2009;106(5):1742–3.

    Article  PubMed  Google Scholar 

  13. Kleiger RE, Stein PK, Bigger JT. Heart rate variability: Measurement and clinical utility. Ann Noninvasive Electrocardiol. 2005;10(1):88–101.

    Article  PubMed  Google Scholar 

  14. Laguna P, Moody G, Mark R. Power spectral density of unevenly sampled data by least-square analysis: performance and application to heart rate signals. IEEE Trans Biomed Eng. 1998;45(6):698–715.

    Article  PubMed  CAS  Google Scholar 

  15. Laude D, Goldman M, Escourrou P, Elghozi JL. Effect of breathing pattern on blood pressure and heart rate oscillations in humans. Clin Exp Pharmacol Physiol. 1993;20(10):619–26.

    Article  PubMed  CAS  Google Scholar 

  16. Laude D, Weise F, Girard A, Elghozi JL. Spectral analysis of systolic blood pressure and heart rate oscillations related to respiration. Clin Exp Pharmacol Physiol. 1995;22(5):352–7.

    Article  PubMed  CAS  Google Scholar 

  17. Logier R, De Jonckheere J, Delecroix M, Keribedj A, Jeanne M, Jounwaz R, Tavernier B. Heart rate variability analysis for arterial hypertension etiological diagnosis during surgical procedures under tourniquet. In: Conference proceedings: 2011 annual international conference of the IEEE engineering in medicine and biology society; 2011. p. 3776–9.

  18. Logier R, Jeanne M, De Jonckheere J, Dassonneville A, Delecroix M, Tavernier B. Physiodoloris: a monitoring device for analgesia/nociception balance evaluation using heart rate variability analysis. In: Conference proceedings: 2010 Annual International conference of the IEEE engineering in medicine and biology society; 2010. p. 1194–7.

  19. Lomb NR. Least-squares frequency analysis of unequally spaced data. Astrophys Space Sci. 1976;39:447–62.

    Article  Google Scholar 

  20. Malik M. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation. 1996;93(5):1043–65.

    Article  Google Scholar 

  21. Mendonca G, Fernhall B, Heffernan K, Pereira F. Spectral methods of heart rate variability analysis during dynamic exercise. Clin Auton Res. 2009;19:237–45.

    Article  PubMed  Google Scholar 

  22. Novak V, Novak P, de Champlain J, Le Blanc AR, Martin R, Nadeau R. Influence of respiration on heart rate and blood pressure fluctuations. J Appl Physiol. 1993;74(2):617–26.

    PubMed  CAS  Google Scholar 

  23. Orfanidis SJ. Optimum signal processing: an introduction. New York: McGraw-Hill; 1988.

    Google Scholar 

  24. Pichon A, Roulaud M, Antoine-Jonville S, de Bisschop C, Denjean A. Spectral analysis of heart rate variability: interchangeability between autoregressive analysis and fast fourier transform. J Electrocardiol. 2006;39(1):31–7.

    Article  PubMed  Google Scholar 

  25. Pitzalis MV, Mastropasqua F, Massari F, Passantino A, Colombo R, Mannarini A, Forleo C, Rizzon P. Effect of respiratory rate on the relationships between rr interval and systolic blood pressure fluctuations: a frequency-dependent phenomenon. Cardiovasc Res. 1998;38(2):332–9.

    Article  PubMed  CAS  Google Scholar 

  26. Press WH (ed). Numerical recipes: the art of scientific computing. 3rd ed. Cambridge: Cambridge University Press; 2007.

    Google Scholar 

  27. Saul JP, Berger RD, Chen MH, Cohen RJ. Transfer function analysis of autonomic regulation. ii. Respiratory sinus arrhythmia. Am J Physiol Heart Circ Physiol. 1989;256(1):H153–61.

    CAS  Google Scholar 

  28. Scargle JD. Study in astronomical time series analysis. ii. Statistical aspects of spectral analysis of unevenly spaced data. Astrophys J. 1982;263:835–53.

    Article  Google Scholar 

  29. Schipke J, Arnold G, Pelzer M. Effect of respiration rate on short-term heart rate variability. J Clin Basic Cardiol. 1999;2(1):92–5.

    Google Scholar 

  30. Sin PYW, Galletly DC, Tzeng YC. Influence of breathing frequency on the pattern of respiratory sinus arrhythmia and blood pressure: old questions revisited. Am J Physiol Heart Circ Physiol. 2010;298(5):H1588–99.

    Article  PubMed  CAS  Google Scholar 

  31. Tarvainen MP, Ranta-aho PO, Karjalainen PA. An advanced detrending method with application to HRV analysis. IEEE Trans Biomed Eng. 2002;49:172–5.

    Article  PubMed  Google Scholar 

  32. Toska K, Eriksen M. Respiration-synchronous fluctuations in stroke volume, heart rate and arterial pressure in humans. J Physiol. 1993;472(1):501–12.

    PubMed  CAS  PubMed Central  Google Scholar 

  33. Yildiz M, Ider YZ. Model based and experimental investigation of respiratory effect on the HRV power spectrum. Physiol Meas. (2006); 27(10):973.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Schaffer.

Additional information

Thorsten Schaffer and Christian Jeleazcov contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaffer, T., Hensel, B., Weigand, C. et al. Evaluation of techniques for estimating the power spectral density of RR-intervals under paced respiration conditions. J Clin Monit Comput 28, 481–486 (2014). https://doi.org/10.1007/s10877-013-9447-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-013-9447-4

Keywords

Navigation