Skip to main content
Log in

Selective and Ultrasensitive Spectroscopic Detection of Mercuric Ion in Aqueous Systems Using Embonic Acid Functionalized Silver Nanoparticle

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Metal poisoning in humans can cause health hazards such as insomnia, mental retardation, nervous disorders and blindness. Most of the commonly used toxic metals are mercury, lead and cadmium. Among these toxic metals, mercury (Hg) has been declared to be highly toxic by the World Health Organization and Environmental Protection Agency. In this regard, the determination of Hg2+ in trace quantities plays an important role in the environment. This study investigates the preparation of embonic acid (EA) functionalized silver nanoparticles (AgNP) through eco-friendly approach for detection of mercuric ion in an aqueous environment. UV–Visible spectra analysis confirmed the stability of EA capped AgNP (EA-AgNP) over a period of 6 months. Stability and destabilization of silver nanoparticles in absence and presence of Hg2+ were confirmed by the zeta potential analysis with the value of − 28.5 mV and − 15 mV and High Resolution-Transmission Electronic Microscopy with increasing size of 15 nm to 130 nm respectively. The lower detection limit was found to be 0.5 nM and 50 fM Hg2+ using EA-AgNP by spectrophotometric and spectrofluorometric respectively and also highly selective to mercuric ion in the presence of a host of commonly interfering cations in aqueous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. A. T. Jan, M. Azam, K. Siddiqui, A. Ali, I. Choi, and Q. M. R. Haq (2015). Int. J. Mol. Sci. 16, 29592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. M. A. Momodu and C. A. Anyakora (2010). Res. J. Environ. Earth Sci. 2, 39.

    CAS  Google Scholar 

  3. Y. Yan, H. Yu, K. Zhang, M. Sun, Y. Zhang, X. Wang, and S. Wang (2016). Nano Res. 9, 2088.

    Article  CAS  Google Scholar 

  4. C. P.Cutler, Metal Allergy. 2018, 3.

  5. J. D. Park and W. Zheng (2012). J. Prev. Med. Public Health. 45, 344.

    Article  PubMed  PubMed Central  Google Scholar 

  6. A. Fevrier-Paul, A. K. Soyibo, S. Mitchell, and M. Voutchkov (2018). J. Health Pollut. 8, 1.

    Article  Google Scholar 

  7. S. Jiang, R. Cheng, R. Ng, Y. Huang, and X. Duan (2015). Nano Res. 8, 257.

    Article  CAS  Google Scholar 

  8. N. Hachiya (2006). J. Med. Assoc. J. 43, 112.

    Google Scholar 

  9. J. Francis (2018). J. Nat. Conserv. 42, 7.

    Article  Google Scholar 

  10. G. Pia, P. C. M. Marco, S. Nicolas, and M. Torsten (2017). Lab Chip. 17, 2693.

    Article  Google Scholar 

  11. M. Kaneo, U. Tsuyoshi, and V. P. Larissa (1997). Sens. Actuators A 59, 1.

    Article  Google Scholar 

  12. R. Correia, S. James, S.-W. Lee, S. P. Morgan, and S. Korposh (2014). J. Opt. 36, 263.

    Google Scholar 

  13. L. N. Suvarapu, S. Baek (2017). Hindawi Int. J. Anal. Chem. 28.

  14. H. Erxleben and J. Ruzicka (2005). Anal. Chem. 77, 5124.

    Article  CAS  PubMed  Google Scholar 

  15. E. Marguí, P. Kregsamer, M. Hidalgo, J. Tapias, I. Queralt, and I. Streli (2010). Talanta. 82, 821.

    Article  PubMed  Google Scholar 

  16. G. C. Wang, L. Lim, H. Chen, J. Chon, J. Choo, J. Hong, and A. J. DeMello (2009). Anal. Bioanal. Chem. 394, 1827.

    Article  CAS  PubMed  Google Scholar 

  17. C. C. Wan, C. S. Chen, and S. J. Jiang (1997). J. Anal. Atomic Spectrom. 12, 683.

    Article  CAS  Google Scholar 

  18. F. X. Han, W. D. Patterson, Y. Xia, B. B. MaruthiSridhar, and Y. Su (2006). Water Air Soil Pollut. 170, 161.

    Article  CAS  Google Scholar 

  19. S. Li, C. Zhang, S. Wang, Q. Liu, H. Feng, X. Ma, and J. Guo (2018). Analyst 18, 1.

    Google Scholar 

  20. J. Wu, L. Li, D. Zhu, P. He, Y. Fang, and G. Cheng (2011). Anal. Chim. Acta 694, 115.

    Article  CAS  PubMed  Google Scholar 

  21. G. Sener, L. Uzun, and A. Denizli (2014). Anal. Chem. 86, 514.

    Article  CAS  PubMed  Google Scholar 

  22. D. R. Raj, S. Prasanth, T. V. Vineeshkumar, and C. Sudarshanaumar (2016). Opt. Commun. 367, 102.

    Article  Google Scholar 

  23. A. Alam, A. Ravindran, P. Chandran, and S. K. Khan (2015). Spectrochim. Acta Part A 137, 503.

    Article  CAS  Google Scholar 

  24. C. H. Chung, J. H. Kim, J. Jung, and J. Chung (2013). Biosens. Bioelectron. 41, 827.

    Article  CAS  PubMed  Google Scholar 

  25. Z. Chen, C. Zhang, H. Ma, T. Zhou, B. Jiang, M. Chen, and X. Chen (2015). Talanta 134, 603.

    Article  CAS  PubMed  Google Scholar 

  26. A. Han, X. Liu, G. D. Prestwich, and L. Zang (2014). Sens. Actuators B 198, 274.

    Article  CAS  Google Scholar 

  27. F. Tanvir, A. Yaqub, S. Tanvir, R. An, and W. A. Anderson (2019). Materials 12, 1533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. A. Nain, S. R. Barman, S. Jain, A. Mukherjee, and J. Satija (2017). Appl. Nanosci. 7, 299.

    Article  CAS  Google Scholar 

  29. F. Zarlaida, M. Adlim, M. S. Surbakti, and A. F. Omar (2018). IOP Conf. Ser. 352, 12049.

    Article  Google Scholar 

  30. T. Sowmya and G. V. Lakshmi (2018). World Sci. News 114, 84.

    Google Scholar 

  31. A. Ghasemi, A. Rabiee, S. Ahmadi, S. Hashemzadeh, F. Lolasi, M. Bozorgomid, A. Kalbasi, B. Nasseri, A. S. Dezfuli, A. R. Aref, M. Karimi, and M. R. Hamblin (2018). Analyst 143, 3249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. F. D. Guerra, M. F. Attia, D. C. Whitehead, and F. Alexis (2018). Molecules. 23, 1760.

    Article  PubMed  PubMed Central  Google Scholar 

  33. H. Malekzad, P. S. Zangabad, H. Mirshekari, M. Karimi, and M. R. Hamblin (2017). Nanotechnol. Rev. 6, 301.

    Article  CAS  PubMed  Google Scholar 

  34. T. Morris, H. Copeland, E. McLinden, S. Wilson, and G. Szulczewski (2003). Langmuir 18, 7261.

    Article  Google Scholar 

  35. I. Khan, K. Saeed, and I. Khan (2019). Arab. J. Chem. 12, 908.

    Article  CAS  Google Scholar 

  36. Y. C. Yeh, B. Creran, and V. M. Rotello (2012). Nanoscale 4, 1871.

    Article  CAS  PubMed  Google Scholar 

  37. M. P. Pileni (2003). Nat. Mater. 2, 145.

    Article  CAS  PubMed  Google Scholar 

  38. J. Duan, H. Yin, R. Wei, and W. Wang (2014). Biosens. Bioelectron. 57, 139.

    Article  CAS  PubMed  Google Scholar 

  39. Z. Zhang, R. C. Patel, R. Kothari, C. P. Johnson, S. E. Friberg, and P. A. Aikens (2000). J. Phys. Chem. B 104, 1176.

    Article  CAS  Google Scholar 

  40. L. Rastogi, R. B. Sashidhar, D. Karunasagar, and J. Arunachalam (2014). Talanta 118, 111.

    Article  CAS  PubMed  Google Scholar 

  41. C. Tagad, H. H. Seo, R. Tongaonkar, Y. W. Yu, J. H. Lee, M. Dingre, A. Kulkarni, H. Fouad, S. A. Ansari, and S. H. Moh (2017). Sens. Mater. 29, 205.

    CAS  Google Scholar 

  42. A. Tirado-Guizar, G. Rodriguez-Gattorno, F. Paraguay-Delgado, and G. Oskam (2017). Mater. Res. Soc. Commun. 7, 695.

    CAS  Google Scholar 

  43. M. A. Aziz, J. Kim, and M. Oyama (2014). Gold Bull. 47, 127.

    Article  CAS  Google Scholar 

  44. T. A. Saleh, K. M. M. AlAqad, and A. Rahim (2018). J. Mol. Liq. 256, 39.

    Article  CAS  Google Scholar 

  45. Y. Zhao, L. Gui, and Z. Chen (2017). Sens. Actuators B. 241, 262.

    Article  CAS  Google Scholar 

  46. M. Roni, K. Murugan, C. Panneerselvam, J. Subramaniam, and J. S. Hwang (2013). Parasitol Res. 112, 981.

    Article  PubMed  Google Scholar 

  47. K. Jyoti, M. Baunthiyal, and A. Singh (2016). J. Radiat. Res. Appl. Sci. 9, 217.

    CAS  Google Scholar 

  48. S. Pirtarighat, M. Ghannadnia, and S. Baghshahi (2019). J. Nanostruct. Chem. 9, 1.

    Article  CAS  Google Scholar 

  49. K. S. Prasad, D. Pathak, A. Pa, P. Dalwadi, R. Prasad, P. Patel, and K. Selvara (2011). Afr. J. Biotechnol. 10, 8122.

    Article  CAS  Google Scholar 

  50. J. X. Xiang, N. Ellis, and Z. ZhaoPing (2011). Chin. Sci. Bull. 56, 1417.

    Article  Google Scholar 

  51. S. W. Lee, S. H. Chang, Y. S. Lai, C. C. Lin, C. M. Tsai, Y. C. Lee, J. C. Chen, and C. L. Huang (2014). Materials 7, 1.

    Google Scholar 

  52. U. Khan, A. Niaz, A. Shah, M. I. Iqbal Zaman, M. A. Zia, F. J. Iftikhar, J. Nisar, M. N. Ahmed, M. S. Akhter, and A. S. Shah (2018). New J. Chem. 42, 528.

    Article  CAS  Google Scholar 

  53. S. V. Kumar, A. P. Bafana, P. Pawar, A. Rahman, S. A. Dahoumane, and C. S. Jefryes (2018). Sci. Rep. 8, 5106.

    Article  PubMed  PubMed Central  Google Scholar 

  54. X. F. Zhang, Z. C. Liu, W. Shen, and S. Gurunathan (2016). Int. J. Mol. Sci. 17, 1534.

    Article  PubMed  PubMed Central  Google Scholar 

  55. G. Sonavane, K. Tomoda, and K. Makino (2008). Colloids Surf. B 66, 274.

    Article  CAS  Google Scholar 

  56. M. J. Haider and M. S. Mehdi (2014). Int. J. Sci. Eng. Res. 5, 381.

    Google Scholar 

  57. N. Skandalis, A. D. Dimopoulou, A. G. Georgopoulou, N. Gallios, D. Papadopoulos, D. Tsipas, I. Theologidis, N. Michailidis, and M. Chatzinikolaidou (2017). Nanomaterials 7, 178.

    Article  PubMed  PubMed Central  Google Scholar 

  58. I. Uddin, K. Ahmad, A. A. Khan, and M. A. Kazmi (2017). Sens. Bio-Sens. Res. 16, 62.

    Article  Google Scholar 

  59. M. L. Firdaus, I. Fitriani, S. Wyantuti, Y. W. Hartati, R. Khaydarov, J. A. Mcalister, H. Obata, and T. Gamo (2017). Anal. Sci. 33, 831.

    Article  CAS  PubMed  Google Scholar 

  60. D. Su, X. Yang, Q. Xia, Q. Zhang, F. Chai, C. Wang, and F. Qu (2014). Nanotechnology 25, 355702.

    Article  PubMed  Google Scholar 

  61. G. H. Jeffery, J. Bassett, J. Mendham, and R. C. Denney, Vogel’s Text Book of Quantitative Chemical Analysis, 5th ed. (Thames Polytechnic, London, 1978).

    Google Scholar 

  62. M. N. Abualhasan, J. Mansour, N. Jaradat, A. N.; Zaid, and I. Khadra (2017). Int. Scholarly Res. Notices. 1.

  63. E. E. Egom, R. Fitzgerald, R. Canning, R. B. Pharithi, C. Murphy, and V. Maher (2017). Int. J. Mol. Sci. 18, 1800.

    Article  PubMed  PubMed Central  Google Scholar 

  64. K. C. Noh, Y. S. Nam, H. J. Lee, and K. B. Lee (2015). Analyst 140, 8209.

    Article  PubMed  Google Scholar 

  65. Z. Chen, C. Zhang, Q. Gao, G. Wang, L. Tan, and Q. Liao (2015). Anal. Chem. 87, 10963.

    Article  CAS  PubMed  Google Scholar 

  66. G. L. Wang, X. Y. Zhu, H. J. Jiao, Y. M. Dong, and J. Li (2012). Biosens. Bioelectron. 31, 337.

    Article  PubMed  Google Scholar 

  67. N. Logan, C. McVey, C. Elliott, and C. Cao (2020). Nano Res. 13 (4), 989.

    Article  CAS  Google Scholar 

  68. Y. Bhattacharjee and A. Chakraborty (2014). ACS Sustain. Chem. Eng. 2, 2149.

    Article  CAS  Google Scholar 

  69. Y. Yaling and Y. He (2019). Anal. Sci. 35, 159.

    Article  PubMed  Google Scholar 

  70. M. Zhao, H. Yu, and Y. He (2019). Sens. Actuators B 283, 329.

    Article  CAS  Google Scholar 

  71. J. Du, M. Zhao, W. Huang, Y. Deng, and Y. He (2018). Anal. Bioanal. Chem. 410, 4519.

    Article  CAS  PubMed  Google Scholar 

  72. Y. Gao, K. Wu, H. Li, W. Chen, M. Fu, K. Yue, X. Zhu, and Q. Liu (2018). Sens. Actuators B 273, 1635.

    Article  CAS  Google Scholar 

  73. H. Wang, Y. Wang, J. Jin, and R. Yang (2008). Anal. Chem. 80, 9021.

    Article  CAS  PubMed  Google Scholar 

  74. S. Karthikeyan, G. Bharanidharan, R. Mangaiyarkarasi, S. Chinnathambi, R. Sriram, K. Gunasekaran, K. Saravanan, M. Gopikrishnan, P. Aruna, and S. Ganesan (2018). Luminescence 33, 731.

    Article  CAS  PubMed  Google Scholar 

  75. N. Vasimalai and S. A. John (2011). Spectrochim. Acta Part A 82, 153.

    Article  CAS  Google Scholar 

  76. J. S. Park, J. N. Wilson, K. I. Hardcastle, U. H. F. Bunz, and M. Srinivasarao (2006). J. Am. Chem. Soc. 128, 7714.

    Article  CAS  PubMed  Google Scholar 

  77. M. Koneswaran and R. Narayanaswamy (2009). Sens. Actuators B 139, 104.

    Article  CAS  Google Scholar 

  78. M. Labeb, A. H. Sakr, M. S. Soliman, T. K. Abdel-Fettah, and S. Ebrahim (2018). Opt. Mater. 79, 331.

    Article  CAS  Google Scholar 

  79. Y. Wang, F. Yang, and X. Yang (2010). ACS Appl. Mater. Interfaces 2, 339.

    Article  CAS  PubMed  Google Scholar 

  80. A. Jeevikaa and D. R. Shankaran (2016). Mater. Res. Bull. 83, 48.

    Article  Google Scholar 

  81. L. Lei, S. Haixia, L. Raoqi, L. Cheng, C. Jia, and G. Li (2021). Micromachines 2, 1070.

    Google Scholar 

  82. S. Muhammad, B. Shahida, A. Sajjad, and H. Rui (2022). J. Electroanal. Chem. 906, 115896.

    Article  Google Scholar 

  83. G. Hao, P. Liping, W. Ning, L. Bingqing, W. Mingyue, C. Yuan, P. Zhilan, L. Yinsheng, and Y. Wu (2022). Colloids Surf. A 634, 128023.

    Article  Google Scholar 

  84. Z. Kaiyu, S. Yuxin, G. Yingdi, S. Qinxing, and L. Weina (2022). Spectrochim. Acta Part A 264, 120281.

    Article  Google Scholar 

  85. Y. Du, R. Liu, B. Liu, S. Wang, M. Y. Han, and Z. Zhang (2013). Anal. Chem. 85, 3160.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Department of Science and Technology and University Grants Commission, Government of India for the sponsored analytical facilities at the Department of Chemistry, Anna University, Chennai through DST-FIST and UGC-SAP schemes. Ms. R. Anitha is thankful to DST, New Delhi for providing Junior Research Fellowship (JRF) under DST-PURSE scheme (DST Ref. No: 9500/PD2/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Rajarajeswari.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anitha, R., Rajarajeswari, G.R. Selective and Ultrasensitive Spectroscopic Detection of Mercuric Ion in Aqueous Systems Using Embonic Acid Functionalized Silver Nanoparticle. J Clust Sci 34, 1999–2015 (2023). https://doi.org/10.1007/s10876-022-02366-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02366-8

Keywords

Navigation