Skip to main content

Advertisement

Log in

Green Synthesis of Selenium Nanoparticles Using Solanum nigrum Fruit Extract and its Anti-cancer Efficacy Against Triple Negative Breast Cancer

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The contemporary study aims at the synthesis of selenium nanoparticles (SeNPs) through green synthesis by utilizing fruit extract of Solanum nigrum and to evaluate its anti-oxidant, anti-bacterial, and anti-cancer activity. Then the synthesized SeNPs had been characterized with UV–Vis spectroscopy, FTIR, XRD, Dynamic Light Scattering, Zeta potential and scanning electron microscopy. The results had shown the successful synthesis of SeNPs which was found to be spherical in shape and has a particle diameter of 87 nm. Further, the FTIR spectrum confirms the presence of various functional groups of the plant extract, which could probably influence the reduction and stabilization of SeNPs. Also the synthesized SeNPs had exhibited a significant dose dependent reduction of free radicals as depicted by DPPH assay. Further the SeNPs had inhibited the proliferation of selected gram-positive and gram- negative bacteria in a dose dependent way indicating their significant anti-bacterial property. Then, the anti-cancer efficacy of the SeNPs against the triple negative breast cancer was analysed by MTT and was found to exhibit an IC50 of 19 µg/ml. These results collectively displays the bioactive potential including anti-oxidant, anti-bacterial, and anti-cancer efficacy posed by the SeNPs which could possibly be explored further for their efficient therapeutics in near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 1

Similar content being viewed by others

References

  1. Rebecca L. Siegel, Kimberly D. Miller, Hannah E. Fuchs, and Ahmedin Jemal (2021). Cancer Statistics, 2021. CA. 71, 7–33.

    PubMed  Google Scholar 

  2. U. Desselberger (2000). Emerging and re-emerging infectious diseases. J. Infect. 40, 3–15.

    Article  CAS  PubMed  Google Scholar 

  3. Y. Park, Y. N. Hong, A. Weyers, Y. S. Kim, and R. J. Linhardt (2000). Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and iron nanoparticles. IET Nanobiotechnology. 5, 69.

    Article  Google Scholar 

  4. Q. Sun, X. Cai, J. Li, M. Zheng, Z. Chen, and C. P. Yu (2014). Green synthesis of iron nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloids Surfaces A Physicochem. Eng. Asp. 444, 226–231.

    Article  CAS  Google Scholar 

  5. S. Sun (2000). Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal Superlattice. Science (80). 287, 1989–92.

  6. J. J. Berzelius (1818). Additional observations on lithionand selenium. Ann. Philos. 11, 373–380.

    Google Scholar 

  7. K. R. Kiran, M. Rani, and A. PalS (2009). Reclaiming degradedland in India through the cultivation ofmedicinalplants. Bot. Res. Int. 2, 174–181.

    Google Scholar 

  8. E. Acharya Siwakoti and B. Pokhrel (2006). Ethno-medicinal plants used by Bantar of Bhaudaha, Morang, Nepal. Our Nature. 4, 96–103.

    Article  Google Scholar 

  9. Z. A. Zakaria, H. K. Gopalan, H. Zainal, et al. (2006). Antinociceptive, anti-inflammatory andantipyretic effects of Solanum nigrum chloroformextract in animal models. Yakugaku Zasshi. 126, 1171–1178.

    Article  CAS  PubMed  Google Scholar 

  10. K. Raju, G. Anbuganapathi, V. Gokulakrishnan, et al. (2003). Effect of Dried Fruits of Solanum nigrumLINN against CCl4-Induced Hepatic Damage inRats. Biol. Pharm. Bull. 26, 1618–1619.

    Article  CAS  PubMed  Google Scholar 

  11. S. J. Lee and K. T. Lim (2003). Antioxidative effects ofglycoprotein isolated from Solanum nigrum Linneon oxygen radicals and its cytotoxic effects onthe MCF-7 cell. J. Food Sci. 68, 466–470.

    Article  CAS  Google Scholar 

  12. V. S. Minaev, S. P. Timoshenkov, and V. V. Kalugin (2005). Structural and phase transformations incondensed selenium. J. Optoelectron. Adv. Mater. 7, 1717.

    CAS  Google Scholar 

  13. Y. Mehdi, J. L. Hornick, L. Istasse, et al. (2013). Selenium inthe Environment, Metabolism and Involvement inBody Functions. Molecules. 18, 3292–3311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. M. J. Moshi, D. F. Otieno, P. K. Mbabazi, et al. (2009). The Ethnomedicine of the Haya people of Bugaboward, Kagera Region, north western Tanzania. J. Ethnobiol. Ethnomed. 5, 24.

    Article  PubMed  PubMed Central  Google Scholar 

  15. I. P. Clement (1998). Lessons from basic research in selenium and cancer prevention. J. Nutr. 128, 1845–1854.

    Article  Google Scholar 

  16. P. Knekt, J. Marniemi, L. Teppo, M. Heliovaara, and A. Aromaa (1998). Is low selenium status a risk factor for lung cancer. Am. J. Epidemiol. 148, 975–982.

    Article  CAS  PubMed  Google Scholar 

  17. M. P. Rayman (2000). The importance of selenium to human health. Lancet. 356, 233–241.

    Article  CAS  PubMed  Google Scholar 

  18. M. P. Rayman (2005). Selenium in cancer prevention: a review of theevidence and mechanism of action. Proc. Nutr. Soc. 64, 527–542.

    Article  CAS  PubMed  Google Scholar 

  19. S. A. Wadhwani, U. U. Shedbalkar, R. Singh, and B. A. Chopade (2016). Biogenic selenium nanoparticles: current status and future prospects. Appl. Microbiol. Biotechnol. 100, 2555–2566.

    Article  CAS  PubMed  Google Scholar 

  20. Liang Tao, Qiu Xinkai, Ye Xuxiao, Liu Yuanyuan, Li Zuowei, Tian Binqiang, Yan Dongliang (2020). Biosynthesis of selenium nanoparticles and their effect on changes in urinary nanocrystallites in calcium oxalate stone formation. 3 Biotech. 10(1), 23.

  21. L. Gunti, R. S. Dass, and K. N. Kalagatur (2019). Phytofabrication of selenium nanoparticles from Emblica officinalis fruit extract andexploring its biopotential applications: Antioxidant, antimicrobial, and biocompatibility. Front. Microbiol. 10, 931.

    Article  PubMed  PubMed Central  Google Scholar 

  22. W. Zhang, et al. (2018). Synthesis and antioxidant properties of Lycium barbarum polysaccharides capped selenium nanoparticles usingtea extract. Artif. Cells Nanomed. Biotechnol. 46, 1463–1470.

    Article  CAS  PubMed  Google Scholar 

  23. H. Alam, N. Khatoon, M. Raza, P. C. Ghosh, and M. Sardar (2019). Synthesis and characterization of nano selenium using plant biomolecules and their potential applications. Bionanoscience. 9, 96–104.

    Article  Google Scholar 

  24. X. Zhai, C. Zhang, G. Zhao, S. Stoll, F. Ren, and X. Leng (2017). Antioxidant capacities of the selenium nanoparticles stabilized by chitosan. J. Nanobiotechnol. 15, 4.

    Article  Google Scholar 

  25. Xiao-Dan. Shi, Yong-Qi. Tian, Wu. Jiu-Lin, and Shao-Yun. Wang (2020). Synthesis, characterization, and biological activity of selenium nanoparticlesconjugated with polysaccharides. Crit. Rev. Food Sci. Nutr. 61, 2225–2236.

    Article  PubMed  Google Scholar 

  26. T. Saranya, K. Kavithaa, M. Paulpandi, S. Ramya, S. Preethi, V. Balachandar, and N. Arul (2020). Enhanced apoptogenesis and oncogene regulatory mechanism of troxerutin in triple negative breast cancer cells. Toxicol. Res. 9, 230–238.

    Article  Google Scholar 

  27. S. Ramya, T. Saranya, K. Kavithaa, et al. (2020). pH dependent drugrelease of Silibinin, a polyphenol conjugated with magnetic nanoparticle against the human colon cancer cell. J. Clust. Sci. 32, 305–317.

    Article  Google Scholar 

  28. C. Ramamurthy, K. S. Sampath, P. Arunkumar, M. S. Kumar, V. Sujatha, K. Premkumar, and C. Thirunavukkarasu (2013). Greensynthesis and characterization of selenium nanoparticles and itsaugmented cytotoxicity with doxorubicin on cancer cells. J. Bioprocess Biosyst. Eng. 36, 1131–1139.

    Article  CAS  Google Scholar 

  29. G. Sharma, et al. (2014). Biomolecule-mediated synthesis of selenium nanoparticles using dried Vitis vinifera (Raisin) extract. Molecules. 19, 2761–2770.

    Article  PubMed  PubMed Central  Google Scholar 

  30. N. Srivastava and M. Mukhopadhyay (2015). Green synthesis and structural characterization of selenium nanoparticles and assessment of their antimicrobial property. Bioprocess Biosyst. Eng. 38, 1723–1730.

    Article  CAS  PubMed  Google Scholar 

  31. S. Malhotra, N. Jha, and K. Desai (2014). A Superficial synthesis of selenium nanospheres using wet chemical approach. Int. J. Nanotechnol. Appl. 3, 2277–4777.

    Google Scholar 

  32. S. Malhotra, N. Jha, and K. Desai (2014). A superficial synthesis of selenium nanospheres using wet chemical approach. Int. J. Nanotechnol. Appl. 3 (4), 7–14.

    Google Scholar 

  33. S. Kannan, K. Mohanraj, K. Prabhu, S. Barathan, and G. Sivakumar (2014). Synthesis of selenium nanorods with assistance of biomolecule. Bull. Mater. Sci. 37, 1631–1635.

    Article  CAS  Google Scholar 

  34. L. Gunti, R. S. Dass, and N. K. Kalagatur (2019). Phytofabrication of Selenium Nanoparticles From Emblica officinalis Fruit Extract and Exploring Its Biopotential Applications: Antioxidant, Antimicrobial, and Biocompatibility. Front. Microbiol. 10, 931.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Y. Z. Cheng, X. Xiao, X. X. Li, D. G. Song, Z. Q. Lu, F. Q. Wang, et al. (2017). Characterization, antioxidant property and cytoprotection of exopolysaccharidecapped elemental selenium particles synthesized by Bacillus paralicheniformis SR14. Carbohydrate Polymers. 178, 18–26.

    Article  CAS  PubMed  Google Scholar 

  36. A. Saxena, R. M. Tripathi, F. Zafar, and P. Singh (2012). Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity. Mater. Lett. 67, 91–94.

    Article  CAS  Google Scholar 

  37. V. R. Ranjitha and V. R. Ravishankar (2018). Extracellular Synthesis of Selenium Nanoparticles from an ActinomycetesStreptomyces griseoruber and Evaluation of its Cytotoxicity on HT-29 Cell Line. Pharm. Nanotechnol. 6, 61.

    Article  CAS  PubMed  Google Scholar 

  38. B. Kulandaivelu and K. M. Gothandam (2016). Cytotoxic Effect on Cancerous Cell Lines by Biologically Synthesized Silver Nanoparticles. Braz Arch Biol Technol. https://doi.org/10.1590/1678-4324-2016150529.

    Article  Google Scholar 

  39. X. Kang, J. Hu, Z. Gao, Y. Ju, and C. Xu (2012). Synthesis, anti-proliferative and proapoptotic activity of novel oleanolic acid azaheterocyclic derivatives. Med. Chem. Comm. 3 (10), 1245–1249.

    Article  CAS  Google Scholar 

  40. K. Govindaraju, G. Kumar, D. Prabhu, C. Arulvasu, V. Karthick, and N. Changmai (2016). Anti-proliferative effect of biogenic gold nanoparticles against breast cancer cell lines (MDA-MB-231 & MCF-7). Appl. Surf. Sci. 371, 415–424.

    Article  Google Scholar 

  41. C. Mellinas, A. Jiménez, and M. D. C. Garrigós (2019). Microwaveassisted green synthesis and antioxidant activity of seleniumnanoparticles using Theobroma cacao L. bean shell extract. Molecules 24 (22), 40–48.

    Article  Google Scholar 

  42. S. Alipour, S. Kalari, M. H. Morowvat, Z. Sabahi, and A. Dehshahri (2021). Green Synthesis of Selenium Nanoparticles by Cyanobacterium Spirulina platensis (abdf2224): Cultivation Condition Quality Controls. BioMed Res Int. https://doi.org/10.1155/2021/6635297.

    Article  PubMed  PubMed Central  Google Scholar 

  43. V. Cittrarasu, D. Kaliannan, K. Dharman, et al. (2021). Green synthesis of selenium nanoparticles mediated from Ceropegia bulbosa Roxb extract and its cytotoxicity, antimicrobial, mosquitocidal and photocatalytic activities. Sci. Rep. 11, 1032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. W. Liao, R. Zhang, C. Dong, Z. Yu, and J. Ren (2016). Novel walnut peptide-selenium hybrids with enhanced anticancer synergism: Facilesynthesis and mechanistic investigation of anticancer activity. Int. J. Nanomed. 11, 1305–1321.

    Google Scholar 

  45. X. Gao, J. Zhang, and L. Zhang (2002). Hollow sphere selenium nanoparticles: Their in vitro anti hydroxyl radical effect. Adv. Mater. 14, 290–293.

    Article  CAS  Google Scholar 

  46. X. Jia, Q. Liu, S. Zou, X. Xu, and L. Zhang (2015). Construction of selenium nanoparticles/β-glucan composites for enhancement of the antitumor activity. Carbohydr. Polym. 117, 434–442.

    Article  CAS  PubMed  Google Scholar 

  47. W. Liao, R. Zhang, C. Dong, Z. Yu, and J. Ren (2016). Novel walnut peptide-selenium hybrids with enhanced anticancer synergism: Facile synthesis and mechanistic investigation of anticancer activity. Int. J. Nanomed. 11, 1305–1321.

    Google Scholar 

  48. X. Yang, W. Zhang, Z. Zhao, N. Li, Z. Mou, D. Sun, Y. Cai, W. Wang, and Y. Lin (2017). Quercetin loading CdSe/ZnS nanoparticles asefficient antibacterial and anticancer materials. J. Inorg. Biochem. 167, 36–48.

    Article  CAS  PubMed  Google Scholar 

  49. Y. Luo, Z. Teng, and Q. Wang (2012). Development of zein nanoparticles coated with carboxymethyl chitosan for encapsulation andcontrolled release of vitamin D3. J. Agric. Food Chem. 60, 836–843.

    Article  CAS  PubMed  Google Scholar 

  50. L. Chan, L. He, et al. (2017). Cancer-targeted seleniumnanoparticles sensitize cancer cells to continuous γ radiation to achieve synergetic chemo-radiotherapy. Chem. Asian J. 12, 3053–3060.

    Article  CAS  PubMed  Google Scholar 

  51. J. Pi, F. Yang, H. Jin, X. Huang, R. Liu, P. Yang, and J. Cai (2013). Selenium nanoparticles inuced membrane bio-mechanical propertychanges in MCF-7 cells by disturbing membrane molecules and F-actin. Bioorg. Med. Chem. Lett. 23, 6296–6303.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by RUSA-2.0-BCTRC, Bharathiar University, Coimbatore, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arul Narayanasamy.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saranya, T., Ramya, S., Kavithaa, K. et al. Green Synthesis of Selenium Nanoparticles Using Solanum nigrum Fruit Extract and its Anti-cancer Efficacy Against Triple Negative Breast Cancer. J Clust Sci 34, 1709–1719 (2023). https://doi.org/10.1007/s10876-022-02334-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02334-2

Keywords

Navigation