Skip to main content

Advertisement

Log in

Precise Construction of Injectable Bioactive Glass/Polyvinyl Alcohol Nanocomposite Hydrogels Promising to Repair the Shoulder Joint Head for Hemiarthroplasty

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A physical cross-linking method was used to construct an injectable hydrogel composite comprised of bioactive glass (BG) particles and polyvinyl alcohol (PVA). BG/PVA hydrogel morphology, mechanical properties, and viscoelasticity were explored. The hydrogel composite had a homogeneous and uniform distribution of BG particles, as evidenced by scanning electronic microscopy. The elastic modulus and static compressive strength were elevated by 152% and 345%, respectively, by adding 2.5 wt% BG particles to the hydrogel composite constructions. A self-standing elastic hydrogel composite with a smooth injectability was found to have a storage mould (G) more remarkable than a loss module (G″) and over the entire frequency range examined. The cell viability and live/dead assay investigation suggested the suitability of the BG/PVA hydrogel composite compared to the control PVA hydrogel groups. Adult male rats were implanted subcutaneously with the BG/PVA hydrogel composite. No inflammatory cell was found inside or over the implant after 4 weeks of implantation, indicating that the hydrogel composite was highly biocompatible. The newly constructed injectable hydrogel BG/PVA nanocomposite properties establish its ability to repair the shoulder joint head for hemiarthroplasty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W. Zhang, G.-J. Yang, S.-X. Wu, D.-Q. Li, Y.-B. Xu, C.-H. Ma, J.-L. Wang, and W.-W. Chen (2018). The guiding role of bone metabolism test in osteoporosis treatment. Am. J. Clin. Exp. Immunol. 7, 40.

    PubMed  PubMed Central  Google Scholar 

  2. G. Adami, K. G. Saag, A. S. Mudano, E. J. Rahn, N. C. Wright, R. C. Outman, S. L. Greenspan, A. Z. LaCroix, J. W. Nieves, and S. L. Silverman (2020). Factors associated with the contemplative stage of readiness to initiate osteoporosis treatment. Osteoporos. Int. 31, 1283–1290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. C.-H. Wu, Y.-F. Chang, C.-H. Chen, E. M. Lewiecki, C. Wüster, I. Reid, K.-S. Tsai, T. Matsumoto, L. B. Mercado-Asis, and D.-C. Chan (2019). Consensus statement on the use of bone turnover markers for short-term monitoring of osteoporosis treatment in the Asia-Pacific region. J. Clin. Densitom. 24, 3.

    Article  PubMed  Google Scholar 

  4. S. P. Schiellerup, K. Skov-Jeppesen, J. A. Windeløv, M. S. Svane, J. J. Holst, B. Hartmann, and M. M. Rosenkilde (2019). Gut hormones and their effect on bone metabolism. Potential drug therapies in future osteoporosis treatment. Front. Endocrinol. (Lausanne) 10, 75.

    Article  PubMed  Google Scholar 

  5. K. Ebina, M. Hirao, H. Tsuboi, Y. Nagayama, M. Kashii, S. Kaneshiro, A. Miyama, H. Nakaya, Y. Kunugiza, and G. Okamura (2020). Effects of prior osteoporosis treatment on early treatment response of romosozumab in patients with postmenopausal osteoporosis. Bone 140, 115574.

    Article  CAS  PubMed  Google Scholar 

  6. L. Hu, C. Yin, F. Zhao, A. Ali, J. Ma, and A. Qian (2018). Mesenchymal stem cells: cell fate decision to osteoblast or adipocyte and application in osteoporosis treatment. Int. J. Mol. Sci. 19, 360.

    Article  PubMed  PubMed Central  Google Scholar 

  7. S. Khosla and L. C. Hofbauer (2017). Osteoporosis treatment: recent developments and ongoing challenges. Lancet Diabetes Endocrinol. 5, 898–907.

    Article  PubMed  PubMed Central  Google Scholar 

  8. P. Mora-Raimundo, D. Lozano, M. Manzano, and M. Vallet-Regí (2019). Nanoparticles to knockdown osteoporosis-related gene and promote osteogenic marker expression for osteoporosis treatment. ACS Nano 13, 5451–5464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. C. Echalier, L. Valot, J. Martinez, A. Mehdi, and G. Subra (2019). Chemical cross-linking methods for cell encapsulation in hydrogels. Mater. Today Commun. 20, 100536.

    Article  CAS  Google Scholar 

  10. S.-W. Wu, X. Liu, A. L. Miller II., Y.-S. Cheng, M.-L. Yeh, and L. Lu (2018). Strengthening injectable thermo-sensitive NIPAAm-g-chitosan hydrogels using chemical cross-linking of disulfide bonds as scaffolds for tissue engineering. Carbohydr. Polym. 192, 308–316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. S. Xia, Q. Zhang, S. Song, L. Duan, and G. Gao (2019). Bioinspired dynamic cross-linking hydrogel sensors with skin-like strain and pressure sensing behaviors. Chem. Mater. 31, 9522–9531.

    Article  CAS  Google Scholar 

  12. Y. Zhao and Z. Sun (2017). Effects of gelatin-polyphenol and gelatin–genipin cross-linking on the structure of gelatin hydrogels. Int. J. Food Prop. 20, S2822–S2832.

    Article  CAS  Google Scholar 

  13. N.T.-P. Nguyen, L.V.-H. Nguyen, N.M.-P. Tran, D. T. Nguyen, T.N.-T. Nguyen, H. A. Tran, N.N.-T. Dang, T. Van Vo, and T.-H. Nguyen (2019). The effect of oxidation degree and volume ratio of components on properties and applications of in situ cross-linking hydrogels based on chitosan and hyaluronic acid. Mater. Sci. Eng. C 103, 109670.

    Article  CAS  Google Scholar 

  14. A. Ibáñez-Fonseca, T. L. Ramos, I. Gonzalez de Torre, L. I. Sánchez-Abarca, S. Muntión, F. J. Arias, M. C. Del Cañizo, M. Alonso, F. Sánchez-Guijo, and J. C. Rodríguez-Cabello (2018). Biocompatibility of two model elastin-like recombinamer-based hydrogels formed through physical or chemical cross-linking for various applications in tissue engineering and regenerative medicine. J. Tissue Eng. Regen. Med. 12, e1450–e1460.

    Article  PubMed  Google Scholar 

  15. Z. Wang, W. Hu, Y. Du, Y. Xiao, X. Wang, S. Zhang, J. Wang, and C. Mao (2020). Green gas-mediated cross-linking generates biomolecular hydrogels with enhanced strength and excellent hemostasis for wound healing. ACS Appl. Mater. Interfaces 12, 13622–13633.

    Article  CAS  PubMed  Google Scholar 

  16. W. Chen, N. Li, Y. Ma, M. L. Minus, K. Benson, X. Lu, X. Wang, X. Ling, and H. Zhu (2019). Superstrong and tough hydrogel through physical cross-linking and molecular alignment. Biomacromolecules 20, 4476–4484.

    Article  CAS  PubMed  Google Scholar 

  17. A. M. Sisso, M. O. Boit, and C. A. DeForest (2020). Self-healing injectable gelatin hydrogels for localized therapeutic cell delivery. J. Biomed. Mater. Res. Part A. 108, 1112–1121.

    Article  CAS  Google Scholar 

  18. N. C. Negrini, N. Celikkin, P. Tarsini, S. Farè, and W. Święszkowski (2020). Three-dimensional printing of chemically cross-linked gelatin hydrogels for adipose tissue engineering. Biofabrication. 12, 25001.

    Article  CAS  Google Scholar 

  19. K. S. Lim, B. J. Klotz, G. C. J. Lindberg, F. P. W. Melchels, G. J. Hooper, J. Malda, D. Gawlitta, and T. B. F. Woodfield (2019). Visible light cross-linking of gelatin hydrogels offers an enhanced cell microenvironment with improved light penetration depth. Macromol. Biosci. 19, 1900098.

    Article  Google Scholar 

  20. O. Hasturk, K. E. Jordan, J. Choi, and D. L. Kaplan (2020). Enzymatically cross-linked silk and silk-gelatin hydrogels with tunable gelation kinetics, mechanical properties and bioactivity for cell culture and encapsulation. Biomaterials. 232, 119720.

    Article  CAS  PubMed  Google Scholar 

  21. L. Zhang, J. Liu, X. Zheng, A. Zhang, X. Zhang, and K. Tang (2019). Pullulan dialdehyde cross-linked gelatin hydrogels with high strength for biomedical applications. Carbohydr. Polym. 216, 45–53.

    Article  CAS  PubMed  Google Scholar 

  22. M. Di Giuseppe, N. Law, B. Webb, R. A. Macrae, L. J. Liew, T. B. Sercombe, R. J. Dilley, and B. J. Doyle (2018). Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting. J. Mech. Behav. Biomed. Mater. 79, 150–157.

    Article  PubMed  Google Scholar 

  23. P. Nikpour, H. Salimi-Kenari, and S. M. Rabiee (2021). Biological and bioactivity assessment of dextran nanocomposite hydrogel for bone regeneration. Prog. Biomater. 10, 271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. L. Zhou, L. Fan, F.-M. Zhang, Y. Jiang, M. Cai, C. Dai, Y.-A. Luo, L.-J. Tu, Z.-N. Zhou, and X.-J. Li (2021). Hybrid gelatin/oxidized chondroitin sulfate hydrogels incorporating bioactive glass nanoparticles with enhanced mechanical properties, mineralization, and osteogenic differentiation. Bioact. Mater. 6, 890–904.

    Article  CAS  PubMed  Google Scholar 

  25. N. Gupta, A. Singh, N. Dey, S. Chattopadhyay, J. P. Joseph, D. Gupta, M. Ganguli, and A. Pal (2021). Pathway-driven peptide-bioglass nanocomposites as the dynamic and self-healable matrix. Chem. Mater. 33, 589–599.

    Article  CAS  Google Scholar 

  26. S. K. Kailasa, D. J. Joshi, M. R. Kateshiya, J. R. Koduru, and N. I. Malek (2022). Review on the biomedical and sensing applications of nanomaterial-incorporated hydrogels. Mater. Today Chem. 23, 100746.

    Article  CAS  Google Scholar 

  27. A. Sadeghian, M. Kharaziha, and M. Khoroushi (2022). Osteoconductive visible light-crosslinkable nanocomposite for hard tissue engineering. Colloids Surf. A Physicochem. Eng. Asp. 632, 127761.

    Article  CAS  Google Scholar 

  28. P. N. Christy, S. K. Basha, and V. S. Kumari (2022). Nano zinc oxide and nano bioactive glass reinforced chitosan/poly (vinyl alcohol) scaffolds for bone tissue engineering application. Mater. Today Commun. 31, 103429.

    Article  CAS  Google Scholar 

  29. D. Vukajlovic, O. Bretcanu, and K. Novakovic (2021). Fabrication and characterization of two types of bone composites made of chitosan-genipin hydrogel and Bioglass 45S5. Open Ceram. 8, 100174.

    Article  CAS  Google Scholar 

  30. G. Gharati, S. Shirian, S. Sharifi, E. Mirzaei, B. Bakhtirimoghadam, I. Karimi, and H. Nazari (2021). Comparison capacity of collagen hydrogel and collagen/strontium bioglass nanocomposite scaffolds with and without mesenchymal stem cells in regeneration of critical sized bone defect in a rabbit animal model. Biol. Trace Elem. Res. 200, 3176.

    Article  PubMed  Google Scholar 

  31. C. D. F. Moreira, S. M. Carvalho, R. M. Florentino, A. França, B. S. Okano, C. M. F. Rezende, H. S. Mansur, and M. M. Pereira (2019). Injectable chitosan/gelatin/bioactive glass nanocomposite hydrogels for potential bone regeneration: in vitro and in vivo analyses. Int. J. Biol. Macromol. 132, 811–821.

    Article  CAS  PubMed  Google Scholar 

  32. P. Nikpour, H. Salimi-Kenari, F. Fahimipour, S. M. Rabiee, M. Imani, E. Dashtimoghadam, and L. Tayebi (2018). Dextran hydrogels incorporated with bioactive glass-ceramic: nanocomposite scaffolds for bone tissue engineering. Carbohydr. Polym. 190, 281–294.

    Article  CAS  PubMed  Google Scholar 

  33. S. O. Ebhodaghe (2022). Hydrogel–based biopolymers for regenerative medicine applications: a critical review. Int. J. Polym. Mater. Polym. Biomater. 71, 155–172.

    Article  CAS  Google Scholar 

  34. L. Chen, W. Wang, Z. Lin, Y. Lu, H. Chen, B. Li, Z. Li, H. Xia, L. Li, and T. Zhang (2022). Conducting molybdenum sulfide/graphene oxide/polyvinyl alcohol nanocomposite hydrogel for repairing spinal cord injury. J. Nanobiotechnol. 20, 1–17.

    Google Scholar 

  35. S. Huang, X. Hong, M. Zhao, N. Liu, H. Liu, J. Zhao, L. Shao, W. Xue, H. Zhang, and P. Zhu (2022). Nanocomposite hydrogels for biomedical applications. Bioeng Transl Med. https://doi.org/10.1002/btm2.10315.

    Article  PubMed  PubMed Central  Google Scholar 

  36. C. D. F. Moreira, S. M. Carvalho, R. G. Sousa, H. S. Mansur, and M. M. Pereira (2018). Nanostructured chitosan/gelatin/bioactive glass in situ forming hydrogel composites as a potential injectable matrix for bone tissue engineering. Mater. Chem. Phys. 218, 304–316.

    Article  CAS  Google Scholar 

  37. R. Dong, F. Lu, P. Liu, X. Li, R. Huang, G. Liu, and J. Chen (2022). Preparation of nanocellulose-polyvinyl alcohol composite hydrogels from Desmodium intortum (Mill.) Urb.: chemical property characterization. Ind. Crops Prod. 176, 114371.

    Article  CAS  Google Scholar 

  38. Z. Yang, F. Zhao, W. Zhang, Z. Yang, M. Luo, L. Liu, X. Cao, D. Chen, and X. Chen (2021). Degradable photothermal bioactive glass composite hydrogel for the sequential treatment of tumor-related bone defects: from anti-tumor to repairing bone defects. Chem. Eng. J. 419, 129520.

    Article  CAS  Google Scholar 

  39. S. Amirthalingam, S. S. Lee, M. Pandian, J. Ramu, S. Iyer, N. S. Hwang, and R. Jayakumar (2021). Combinatorial effect of nano whitlockite/nano bioglass with FGF-18 in an injectable hydrogel for craniofacial bone regeneration. Biomater. Sci. 9, 2439–2453.

    Article  CAS  PubMed  Google Scholar 

  40. J. Wu, K. Zheng, X. Huang, J. Liu, H. Liu, A. R. Boccaccini, Y. Wan, X. Guo, and Z. Shao (2019). Thermally triggered injectable chitosan/silk fibroin/bioactive glass nanoparticle hydrogels for in-situ bone formation in rat calvarial bone defects. Acta Biomater. 91, 60–71.

    Article  CAS  PubMed  Google Scholar 

  41. E. Zeimaran, S. Pourshahrestani, A. Fathi, N. A. B. Abd Razak, N. A. Kadri, A. Sheikhi, and F. Baino (2021). Advances in bioactive glass-containing injectable hydrogel biomaterials for tissue regeneration. Acta Biomater. 136, 1.

    Article  CAS  PubMed  Google Scholar 

  42. X. Bai, S. Lü, H. Liu, Z. Cao, P. Ning, Z. Wang, C. Gao, B. Ni, D. Ma, and M. Liu (2017). Polysaccharides based injectable hydrogel compositing bio-glass for cranial bone repair. Carbohydr. Polym. 175, 557–564.

    Article  CAS  PubMed  Google Scholar 

  43. P. Bargavi, R. Ramya, S. Chitra, S. Vijayakumari, R. R. Chandran, D. Durgalakshmi, P. Rajashree, and S. Balakumar (2020). Bioactive, degradable and multi-functional three-dimensional membranous scaffolds of bioglass and alginate composites for tissue regenerative applications. Biomater. Sci. 8, 4003–4025.

    Article  CAS  PubMed  Google Scholar 

  44. X. Zhang, Y. Li, Z. Ma, D. He, and H. Li (2021). Modulating degradation of sodium alginate/bioglass hydrogel for improving tissue infiltration and promoting wound healing. Bioact. Mater. 6, 3692–3704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. A. Kumar and S. S. Han (2021). Enhanced mechanical, biomineralization, and cellular response of nanocomposite hydrogels by bioactive glass and halloysite nanotubes for bone tissue regeneration. Mater. Sci. Eng. C 128, 112236.

    Article  CAS  Google Scholar 

  46. K. Vuornos, M. Ojansivu, J. T. Koivisto, H. Häkkänen, B. Belay, T. Montonen, H. Huhtala, M. Kääriäinen, L. Hupa, and M. Kellomäki (2019). Bioactive glass ions induce efficient osteogenic differentiation of human adipose stem cells encapsulated in gellan gum and collagen type I hydrogels. Mater. Sci. Eng. C. 99, 905–918.

    Article  CAS  Google Scholar 

  47. S. P. Sevari, F. Shahnazi, C. Chen, J. C. Mitchell, S. Ansari, and A. Moshaverinia (2020). Bioactive glass-containing hydrogel delivery system for osteogenic differentiation of human dental pulp stem cells. J. Biomed. Mater. Res. Part A. 108, 557–564.

    Article  CAS  Google Scholar 

  48. L. Kong, Z. Wu, H. Zhao, H. Cui, J. Shen, J. Chang, H. Li, and Y. He (2018). Bioactive injectable hydrogels containing desferrioxamine and bioglass for diabetic wound healing. ACS Appl. Mater. Interfaces 10, 30103–30114.

    Article  CAS  PubMed  Google Scholar 

  49. W. Liang, X. Wu, Y. Dong, R. Shao, X. Chen, P. Zhou, and F. Xu (2021). In vivo behavior of bioactive glass-based composites in animal models for bone regeneration. Biomater Sci. https://doi.org/10.1039/D0BM01663B.

    Article  PubMed  Google Scholar 

  50. A. Gomez-Lopez, B. Grignard, I. Calvo, C. Detrembleur, and H. Sardon (2020). Monocomponent non-isocyanate polyurethane adhesives based on a sol-gel process. ACS Appl. Polym. Mater. 2, 1839–1847.

    Article  CAS  Google Scholar 

  51. M. Yang, W. Liu, C. Jiang, S. He, Y. Xie, and Z. Wang (2018). Fabrication of superhydrophobic cotton fabric with fluorinated TiO2 sol by a green and one-step sol-gel process. Carbohydr. Polym. 197, 75–82.

    Article  CAS  PubMed  Google Scholar 

  52. A. Dehghanghadikolaei, J. Ansary, and R. Ghoreishi (2018). Sol-gel process applications: a mini-review. Proc. Nat. Res. Soc. 2, 2008.

    Article  Google Scholar 

  53. J. Huang, L. Chen, Q. Yuan, Z. Gu, and J. Wu (2019). Tofu-Based hybrid hydrogels with antioxidant and low immunogenicity activity for enhanced wound healing. J. Biomed. Nanotechnol. 15, 1371–1383.

    Article  CAS  PubMed  Google Scholar 

  54. A. Dev, S. J. Mohanbhai, A. C. Kushwaha, A. Sood, M. N. Sardoiwala, S. R. Choudhury, and S. Karmakar (2020). κ-carrageenan-C-phycocyanin based smart injectable hydrogels for accelerated wound recovery and real-time monitoring. Acta Biomater. 109, 121–131. https://doi.org/10.1016/j.actbio.2020.03.023.

    Article  CAS  PubMed  Google Scholar 

  55. O. Domengé, H. Ragot, R. Deloux, A. Crépet, G. Revet, S. E. Boitard, A. Simon, N. Mougenot, L. David, T. Delair, A. Montembault, and O. Agbulut (2021). Efficacy of epicardial implantation of acellular chitosan hydrogels in ischemic and nonischemic heart failure: impact of the acetylation degree of chitosan. Acta Biomater. 119, 125–139. https://doi.org/10.1016/j.actbio.2020.10.045.

    Article  CAS  PubMed  Google Scholar 

  56. S. Camarero-Espinosa, B. Rothen-Rutishauser, E. J. Foster, and C. Weder (2016). Articular cartilage: from formation to tissue engineering. Biomater. Sci. 4, 734–767. https://doi.org/10.1039/C6BM00068A.

    Article  CAS  PubMed  Google Scholar 

  57. J. Sonamuthu, Y. Cai, H. Liu, M. S. M. Kasim, V. R. Vasanthakumar, B. Pandi, H. Wang, and J. Yao (2020). MMP-9 responsive dipeptide-tempted natural protein hydrogel-based wound dressings for accelerated healing action of infected diabetic wound. Int. J. Biol. Macromol. 153, 1058–1069. https://doi.org/10.1016/j.ijbiomac.2019.10.236.

    Article  CAS  PubMed  Google Scholar 

  58. M. S. Mohamed Kasim, S. Sundar, and R. Rengan (2018). Synthesis and structure of new binuclear ruthenium(II) arene benzil bis(benzoylhydrazone) complexes: Investigation on antiproliferative activity and apoptosis induction. Inorg. Chem. Front. 5, 585–596. https://doi.org/10.1039/c7qi00761b.

    Article  CAS  Google Scholar 

  59. M. K. M. Subarkhan and R. Ramesh (2016). Ruthenium(ii) arene complexes containing benzhydrazone ligands: synthesis, structure and antiproliferative activity. Inorg. Chem. Front. 3, 1245–1255. https://doi.org/10.1039/C6QI00197A.

    Article  CAS  Google Scholar 

  60. K. Giriraj, M. S. Mohamed Kasim, K. Balasubramaniam, S. K. Thangavel, J. Venkatesan, S. Suresh, P. Shanmugam, and C. Karri (2022). Various coordination modes of new coumarin Schiff bases toward Cobalt (III) ion: synthesis, spectral characterization, in vitro cytotoxic activity, and investigation of apoptosis. Appl. Organomet. Chem. 36, e6536. https://doi.org/10.1002/aoc.6536.

    Article  CAS  Google Scholar 

  61. R. Pilliadugula, J. Haribabu, M. K. Mohamed Subarkhan, C. Echeverria, R. Karvembu, and N. Gopalakrishnan (2021). Effect of morphology and (Sn, Cr) doping on in vitro antiproliferation properties of hydrothermally synthesized 1D GaOOH nanostructures. J. Sci. Adv. Mater. Devices 6, 351–363. https://doi.org/10.1016/j.jsamd.2021.03.003.

    Article  CAS  Google Scholar 

  62. G. Kalaiarasi, M. Mohamed Subarkhan, C. K. Fathima Safwana, S. Sruthi, T. Sathiya Kamatchi, B. Keerthana, and S. L. Ashok-Kumar (2022). New organoruthenium(II) complexes containing N, X-donor (X = O, S) heterocyclic chelators: synthesis, spectral characterization, in vitro cytotoxicity and apoptosis investigation. Inorg. Chim. Acta 535, 120863. https://doi.org/10.1016/j.ica.2022.120863.

    Article  CAS  Google Scholar 

  63. S. Swaminathan, J. Haribabu, M. K. Mohamed Subarkhan, D. Gayathri, N. Balakrishnan, N. Bhuvanesh, C. Echeverria, and R. Karvembu (2021). Impact of aliphatic acyl and aromatic thioamide substituents on the anticancer activity of Ru(ii)-p-cymene complexes with acylthiourea ligands—in vitro and in vivo studies. Dalton Trans. 50, 16311–16325. https://doi.org/10.1039/D1DT02611A.

    Article  CAS  PubMed  Google Scholar 

  64. S. Balaji, M. K. Mohamed Subarkhan, R. Ramesh, H. Wang, and D. Semeril (2020). Synthesis and structure of arene Ru(II) N∧O-chelating complexes: in vitro cytotoxicity and cancer cell death mechanism. Organometallics 39, 1366–1375. https://doi.org/10.1021/acs.organomet.0c00092.

    Article  CAS  Google Scholar 

  65. Y. Wang, J. Jin, L. Shu, T. Li, S. Lu, M. K. M. Subarkhan, C. Chen, and H. Wang (2020). New organometallic ruthenium(II) compounds synergistically show cytotoxic, antimetastatic and antiangiogenic activities for the treatment of metastatic cancer. Chem. A Eur. J. 26, 15170–15182. https://doi.org/10.1002/chem.202002970.

    Article  CAS  Google Scholar 

  66. I. P. Grudzinski, M. Bystrzejewski, M. A. Cywinska, A. Kosmider, M. Poplawska, A. Cieszanowski, and A. Ostrowska (2013). Cytotoxicity evaluation of carbon-encapsulated iron nanoparticles in melanoma cells and dermal fibroblasts. J. Nanopart. Res. 15, 1835. https://doi.org/10.1007/s11051-013-1835-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. W. Xu, R. Thapa, D. Liu, T. Nissinen, S. Granroth, A. Närvänen, M. Suvanto, H. A. Santos, and V.-P. Lehto (2015). Smart porous silicon nanoparticles with polymeric coatings for sequential combination therapy. Mol. Pharm. 12, 4038–4047. https://doi.org/10.1021/acs.molpharmaceut.5b00473.

    Article  CAS  PubMed  Google Scholar 

  68. Y. Shao, X. Tian, W. Hu, Y. Zhang, H. Liu, H. He, Y. Shen, F. Xie, and L. Li (2012). The properties of Gd2O3-assembled silica nanocomposite targeted nanoprobes and their application in MRI. Biomaterials 33, 6438–6446. https://doi.org/10.1016/j.biomaterials.2012.05.065.

    Article  CAS  PubMed  Google Scholar 

  69. M. Sedighi, F. Rahimi, M.-A. Shahbazi, A. H. Rezayan, H. Kettiger, T. Einfalt, J. Huwyler, and D. Witzigmann (2020). Controlled tyrosine kinase inhibitor delivery to liver cancer cells by gate-capped mesoporous silica nanoparticles. ACS Appl. Bio Mater. 3, 239–251. https://doi.org/10.1021/acsabm.9b00772.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research received no specific grant from the public, commercial, or not-for-profit funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Lin.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Lin, C. Precise Construction of Injectable Bioactive Glass/Polyvinyl Alcohol Nanocomposite Hydrogels Promising to Repair the Shoulder Joint Head for Hemiarthroplasty. J Clust Sci 34, 1841–1851 (2023). https://doi.org/10.1007/s10876-022-02331-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02331-5

Keywords

Navigation