Skip to main content
Log in

Biogenic Gold Nanoparticles: Current Applications and Future Prospects

  • Review Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Metal nanoparticles have gained considerable attention as versatile nanomaterials due to their size- and shape- dependent electrical, electronic, optical, and catalytic properties. Various physical and chemical approaches have been investigated for synthesizing metal nanoparticles, specifically gold nanoparticles due to their biocompatibility, antioxidant potentials, catalytic activity, and other promising characteristics. As the chemical based approaches have led to questions on toxicity, plant-based sources and microorganisms like bacteria, fungi and algae have been evaluated for synthesizing metal nanoparticles. Gold nanoparticles derived from biological sources are expected to have different properties than those derived from chemical sources, allowing for a wider range of applications. This review provides an overview of the myriad of sources explored for the synthesis of gold nanoparticles which have found useful applications in several fields. The general approach for synthesizing gold nanoparticles is provided followed by the major applications in specific fields namely medicine, biology, electrochemistry and catalysis. Additionally, the possible challenges and future prospects of biosynthesis of nanoparticles have been highlighted. This work could provide an update on the recent advances in the applications of biogenic nanoparticles for future developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Duan, Y. Liu, Z. Chen, D. Liu, E. Yu, X. Zhang, H. Fu, J. Fu, J. Zhang, and H. Du (2020). Amorphous molybdenum sulfide nanocatalysts simultaneously realizing efficient upgrading of residue and synergistic synthesis of 2D MoS2 nanosheets/carbon hierarchical structures. Green Chem. 22 (1), 44–53. https://doi.org/10.1039/C9GC02855B.

    Article  CAS  Google Scholar 

  2. C. Zhao, M. Xi, J. Huo, C. He, and L. Fu (2022). Electro-reduction of N2 on nanostructured materials and the design strategies of advanced catalysts based on descriptors. Mater. Today Phys. https://doi.org/10.1016/j.mtphys.2022.100609.

    Article  Google Scholar 

  3. J. Kim, J. Lee, H. B. Na, B. C. Kim, J. K. Youn, J. H. Kwak, K. Moon, E. Lee, J. Kim, J. Park, A. Dohnalkova, H. G. Park, M. B. Gu, H. N. Chang, J. W. Grate, and T. Hyeon (2005). A magnetically separable, highly stable enzyme system based on nanocomposites of enzymes and magnetic nanoparticles shipped in hierarchically ordered, mesocellular, mesoporous silica. Small 1 (12), 1203–1207.

    Article  CAS  PubMed  Google Scholar 

  4. R. J. Aitken, M. Q. Chaudhry, A. B. A. Boxall, and M. Hull (2006). Manufacture and use of nanomaterials: current status in the UK and global trends. Occup. Med. 56 (5), 300–306.

    Article  CAS  Google Scholar 

  5. H. S. Nalwa (2014). A special issue on reviews in biomedical applications of nanomaterials, tissue engineering, stem cells, bioimaging and toxicity. J. Biomed. Nanotechnol. 10 (10), 2421–2423.

    Article  CAS  PubMed  Google Scholar 

  6. J. Bhaumik, A. K. Mittal, A. Banerjee, Y. Chisti, and U. C. Banerjee (2015). Applications of phototheranostic nanoagents in photodynamic therapy. Nano Res. 8 (5), 1373–1394.

    Article  CAS  Google Scholar 

  7. T. Das, S. Banerjee, K. Dasgupta, J. B. Joshi, and V. Sudarsan (2015). Nature of the Pd-CNT interaction in Pd nanoparticles dispersed on multi-walled carbon nanotubes and its implications in hydrogen storage properties. RSC Adv. 5 (52), 41468–41474.

    Article  CAS  Google Scholar 

  8. M. Daniel and D. Astruc (2004). Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104 (1), 293–346.

    Article  CAS  PubMed  Google Scholar 

  9. R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R. R. Bhonde, and M. Sastry (2005). Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21 (23), 10644–10654. https://doi.org/10.1021/la0513712.

    Article  CAS  PubMed  Google Scholar 

  10. K. K. Jain (2008). Nanomedicine: application of nanobiotechnology in medical practice. Med. Princ. Pract. 17 (2), 89–101.

    Article  CAS  PubMed  Google Scholar 

  11. B. Panchapakesan, B. Book-Newell, P. Sethu, M. Rao, and J. Irudayaraj (2011). Gold nanoprobes for theranostics. Nanomedicine 6 (10), 1787–1811.

    Article  PubMed  Google Scholar 

  12. W. F. Lai (2021). Development of hydrogels with self-healing properties for delivery of bioactive agents. Mol. Pharm. 18 (5), 1833–1841.

    Article  CAS  PubMed  Google Scholar 

  13. W. F. Lai and W. T. Wong (2021). Property-tuneable microgels fabricated by using flow-focusing microfluidic geometry for bioactive agent delivery. Pharmaceutics 13 (6), 787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. M. Wang, C. Jiang, S. Zhang, X. Song, Y. Tang, and H. M. Cheng (2018). Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat. Chem. 10 (6), 667–672.

    Article  CAS  PubMed  Google Scholar 

  15. X. Zhang, Y. Tang, F. Zhang, and C. S. Lee (2016). A novel aluminum–graphite dual-ion battery. Adv. Energy Mater. 6 (11), 1502588.

    Article  Google Scholar 

  16. M. B. Cortie (2004). The weird world of nanoscale gold. Gold Bull. 37 (1–2), 12–19.

    Article  CAS  Google Scholar 

  17. M. Faraday (1857). The Bakerian lecture: experimental relations of gold (and other metals) to light. Philos. Trans. R. Soc. Lond. 147, 145–181.

    Google Scholar 

  18. D. Thompson (2007). Michael Faraday’s recognition of ruby gold: the birth of modern nanotechnology. Gold Bull. 40 (4), 267–269.

    Article  CAS  Google Scholar 

  19. J. Turkevich, G. Garton, and P. C. Stevenson (1954). The color of colloidal gold. J. Colloid Sci. 9, 26–35.

    Article  Google Scholar 

  20. A. Schröfel, G. Kratošová, I. Šafařík, M. Šafaříková, I. Raška, and L. M. Shor (2014). Applications of biosynthesized metallic nanoparticles—a review. Acta Biomater. 10 (10), 4023–4042.

    Article  PubMed  Google Scholar 

  21. U. M. Badeggi, E. Ismail, A. O. Adeloye, S. Botha, J. A. Badmus, J. L. Marnewick, C. N. Cupido, and A. A. Hussein (2020). Green synthesis of gold nanoparticles capped with procyanidins from Leucosidea sericea as potential antidiabetic and antioxidant agents. Biomolecules 10 (3), 1–24. https://doi.org/10.3390/biom10030452.

    Article  CAS  Google Scholar 

  22. S. Basu, P. Maji, and J. Ganguly (2016). Biosynthesis, characterisation and antimicrobial activity of silver and gold nanoparticles by Dolichos biflorus Linn seed extract. J. Exp. Nanosci. 11 (8), 660–668. https://doi.org/10.1080/17458080.2015.1112042.

    Article  CAS  Google Scholar 

  23. S. K. Das, A. R. Das, and A. K. Guha (2009). Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir 25 (14), 8192–8199. https://doi.org/10.1021/la900585p.

    Article  CAS  PubMed  Google Scholar 

  24. Y. Li, Y. Li, Q. Li, X. Fan, J. Gao, and Y. Luo (2016). Rapid Biosynthesis of gold nanoparticles by the extracellular secretion of Bacillus niabensis 45: characterization and antibiofilm activity. J. Chem. 2016, 1–8. https://doi.org/10.1155/2016/2781347.

    Article  CAS  Google Scholar 

  25. D. MubarakAli, N. Thajuddin, K. Jeganathan, and M. Gunasekaran (2011). Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids Surf. B 85 (2), 360–365. https://doi.org/10.1016/j.colsurfb.2011.03.009.

    Article  CAS  Google Scholar 

  26. P. Karuppaiya, E. Satheeshkumar, W. T. Chao, L. Y. Kao, E. C. F. Chen, and H. S. Tsay (2013). Anti-metastatic activity of biologically synthesized gold nanoparticles on human fibrosarcoma cell line HT-1080. Colloids Surf. B 110, 163–170. https://doi.org/10.1016/j.colsurfb.2013.04.037.

    Article  CAS  Google Scholar 

  27. V. Venkatpurwar, A. Shiras, and V. Pokharkar (2011). Porphyran capped gold nanoparticles as a novel carrier for delivery of anticancer drug: in vitro cytotoxicity study. Int. J. Pharm. 409 (1–2), 314–320. https://doi.org/10.1016/j.ijpharm.2011.02.054.

    Article  CAS  PubMed  Google Scholar 

  28. C. Weibo, G. Ting, H. Hao, and S. Jiangtao (2017). Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol Sci Appl. https://doi.org/10.4018/978-1-5225-3158-6.ch035.

    Article  Google Scholar 

  29. S. M. Ghoreishi, M. Behpour, and M. Khayatkashani (2011). Green synthesis of silver and gold nanoparticles using Rosa damascena and its primary application in electrochemistry. Physica E 44 (1), 97–104. https://doi.org/10.1016/j.physe.2011.07.008.

    Article  CAS  Google Scholar 

  30. Y. Wang, X. He, K. Wang, X. Zhang, and W. Tan (2009). Barbated Skullcup herb extract-mediated biosynthesis of gold nanoparticles and its primary application in electrochemistry. Colloids Surf. B 73 (1), 75–79. https://doi.org/10.1016/j.colsurfb.2009.04.027.

    Article  CAS  Google Scholar 

  31. A. Gangula, R. Podila, L. Karanam, C. Janardhana, and A. M. Rao (2011). Catalytic reduction of 4-nitrophenol using biogenic gold and silver nanoparticles derived from Breynia rhamnoides. Langmuir 27 (24), 15268–15274. https://doi.org/10.1021/la2034559.

    Article  CAS  PubMed  Google Scholar 

  32. J. Huang, W. Wang, L. Lin, Q. Li, W. Lin, M. Li, and S. Mann (2009). A General strategy for the biosynthesis of gold nanoparticles by traditional Chinese medicines and their potential application as catalysts. Chemistry - Asian J. 4 (7), 1050–1054. https://doi.org/10.1002/asia.200900064.

    Article  CAS  Google Scholar 

  33. N. C. Sharma, S. V. Sahi, S. Nath, J. G. Parsons, J. L. Gardea-Torresdey, and P. Tarasankar (2007). Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environ. Sci. Technol. 41 (14), 5137–5142. https://doi.org/10.1021/es062929a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Y. N. Mata, E. Torres, M. L. Blázquez, A. Ballester, F. González, and J. A. Muñoz (2009). Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus. J. Hazard. Mater. 166 (2–3), 612–618. https://doi.org/10.1016/j.jhazmat.2008.11.064.

    Article  CAS  PubMed  Google Scholar 

  35. M. Sathishkumar, A. Mahadevan, K. Vijayaraghavan, S. Pavagadhi, and R. Balasubramanian (2010). Green recovery of gold through biosorption, biocrystallization, and pyro-crystallization. Ind. Eng. Chem. Res. 49 (16), 7129–7135. https://doi.org/10.1021/ie100104j.

    Article  CAS  Google Scholar 

  36. A. W. Wahab, A. Karim, Asmawati, and I. W. Sutapa (2018). Bio-synthesis of gold nanoparticles through bioreduction using the aqueous extract of Muntingia calabura L. leaves. Orient. J. Chem. 34 (1), 401–409. https://doi.org/10.13005/ojc/340143.

    Article  CAS  Google Scholar 

  37. Anshup, J. S. Venkataraman, C. Subramaniam, R. Rajeev Kumar, S. Priya, T. R. Santhosh Kumar, R. V. Omkumar, A. John, and T. Pradeep (2005). Growth of gold nanoparticles in human cells. Langmuir 21 (25), 11562–11567. https://doi.org/10.1021/la0519249.

    Article  CAS  PubMed  Google Scholar 

  38. H. Banu, N. Renuka, S. M. Faheem, R. Ismail, V. Singh, Z. Saadatmand, S. S. Khan, K. Narayanan, A. Raheem, K. Premkumar, and G. Vasanthakumar (2018). Gold and silver nanoparticles biomimetically synthesized using date palm pollen extract-induce apoptosis and regulate p53 and Bcl-2 expression in human breast adenocarcinoma cells. Biol. Trace Elem. Res. 186 (1), 122–134. https://doi.org/10.1007/s12011-018-1287-0.

    Article  CAS  PubMed  Google Scholar 

  39. F. Namvar, H. S. Rahman, R. Mohamad, A. Rasedee, S. K. Yeap, M. S. Chartrand, S. Azizi, and P. M. Tahir (2015). Apoptosis induction in human leukemia cell lines by gold nanoparticles synthesized using the green biosynthetic approach. J. Nanomater. 2015, 1–11. https://doi.org/10.1155/2015/642621.

    Article  CAS  Google Scholar 

  40. T. Ashokkumar, J. Arockiaraj, and K. Vijayaraghava (2016). Biosynthesis of gold nanoparticles using green roof species Portulaca grandiflora and their cytotoxic effects against C6 glioma human cancer cells. Environ. Progress Sustain. Energy 33 (3), 676–680.

    Google Scholar 

  41. J. Annamalai and T. Nallamuthu (2015). Characterization of biosynthesized gold nanoparticles from aqueous extract of Chlorella vulgaris and their anti-pathogenic properties. Appl. Nanosci. (Switzerland) 5 (5), 603–607. https://doi.org/10.1007/s13204-014-0353-y.

    Article  CAS  Google Scholar 

  42. M. Eskandari-Nojehdehi, H. Jafarizadeh-Malmiri, and J. Rahbar-Shahrouzi (2016). Optimization of processing parameters in green synthesis of gold nanoparticles using microwave and edible mushroom (Agaricus bisporus) extract and evaluation of their antibacterial activity. Nanotechnol. Rev. 5 (6), 537–548. https://doi.org/10.1515/ntrev-2016-0064.

    Article  CAS  Google Scholar 

  43. T. S. Dhas, V. G. Kumar, V. Karthick, K. Vasanth, G. Singaravelu, and K. Govindaraju (2016). Effect of biosynthesized gold nanoparticles by Sargassum swartzii in alloxan induced diabetic rats. Enzyme Microb. Technol. 95, 100–106. https://doi.org/10.1016/j.enzmictec.2016.09.003.

    Article  CAS  PubMed  Google Scholar 

  44. A. Rajendran (2017). Antibacterial properties and mechanism of gold nanoparticles obtained from Pergularia daemia leaf extract. J. Nanomed Res. 6 (1), 1–5. https://doi.org/10.15406/jnmr.2017.06.00146.

    Article  CAS  Google Scholar 

  45. S. Khan, J. Bakht, and F. Syed (2018). Green synthesis of gold nanoparticles using Acer pentapomicum leaves extract its characterization, antibacterial, antifungal and antioxidant bioassay. Dig. J. Nanomater. Biostruct. 13 (2), 579–589.

    Google Scholar 

  46. A. M. Saad, A. A. H. Abdel-Aleem, M. A. Ghareeb, M. M. Hamed, M. S. Abdel-Aziz, and A. H. Hadad (2017). In vitro antioxidant, antimicrobial and cytotoxic activities and green biosynthesis of silver & gold nanoparticles using Callistemon citrinus leaf extract. J. Appl. Pharm. Sci. 7 (6), 141–149. https://doi.org/10.7324/JAPS.2017.70620.

    Article  CAS  Google Scholar 

  47. E. B. El Domany, T. M. Essam, A. E. Ahmed, and A. A. Farghali (2018). Biosynthesis physico-chemical optimization of gold nanoparticles as anti-cancer and synergetic antimicrobial activity using Pleurotus ostreatus fungus. J. Appl. Pharm. Sci. 8 (5), 119–128. https://doi.org/10.7324/JAPS.2018.8516.

    Article  Google Scholar 

  48. M. Shahriari, S. Hemmati, A. Zangeneh, and M. M. Zangeneh (2019). Biosynthesis of gold nanoparticles using Allium noeanum Reut. ex Regel leaves aqueous extract; characterization and analysis of their cytotoxicity, antioxidant, and antibacterial properties. Appl. Organomet. Chem. 33 (11), 1–11. https://doi.org/10.1002/aoc.5189.

    Article  CAS  Google Scholar 

  49. N. González-Ballesteros, S. Prado-López, J. B. Rodríguez-González, M. Lastra, and M. C. Rodríguez-Argüelles (2017). Green synthesis of gold nanoparticles using brown algae Cystoseira baccata: its activity in colon cancer cells. Colloids Surf. B 153, 190–198. https://doi.org/10.1016/j.colsurfb.2017.02.020.

    Article  CAS  Google Scholar 

  50. S. Jeyarani, N. M. Vinita, P. Puja, S. Senthamilselvi, U. Devan, A. J. Velangani, M. Biruntha, A. Pugazhendhi, and P. Kumar (2020). Biomimetic gold nanoparticles for its cytotoxicity and biocompatibility evidenced by fluorescence-based assays in cancer (MDA-MB-231) and non-cancerous (HEK-293) cells. J. Photochem. Photobiol. B 202, 111–715. https://doi.org/10.1016/j.jphotobiol.2019.111715.

    Article  CAS  Google Scholar 

  51. A. I. El-Batal and M. S. Al Tamie (2015). Biosynthesis of gold nanoparticles using Marine Streptomyces cyaneus and their antimicrobial, antioxidant and antitumor (in vitro) activities. J. Chem. Pharm. Res. 7 (7), 1020–1036.

    CAS  Google Scholar 

  52. P. Singh, Y. J. Kim, and D. C. Yang (2016). A strategic approach for rapid synthesis of gold and silver nanoparticles by Panax ginseng leaves. Artif. Cells Nanomed. Biotechnol. 44 (8), 1949–1957. https://doi.org/10.3109/21691401.2015.1115410.

    Article  CAS  PubMed  Google Scholar 

  53. S. A. Kumar, Y. A. Peter, and J. L. Nadeau (2008). Facile biosynthesis, separation and conjugation of gold nanoparticles to doxorubicin. Nanotechnology 19 (49), 1–11. https://doi.org/10.1088/0957-4484/19/49/495101.

    Article  CAS  Google Scholar 

  54. S. K. Nune, N. Chanda, R. Shukla, K. Katti, R. R. Kulkarni, S. Thilakavathy, S. Mekapothula, R. Kannan, and K. V. Katti (2009). Green nanotechnology from tea: phytochemicals in tea as building blocks for production of biocompatible gold nanoparticles. J. Mater. Chem. 19 (19), 2912–2920. https://doi.org/10.1039/b822015h.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. K. Amarnath, N. L. Mathew, J. Nellore, C. R. V. Siddarth, and J. Kumar (2011). Facile synthesis of biocompatible gold nanoparticles from Vites vinefera and its cellular internalization against HBL-100 cells. Cancer Nanotechnol. 2 (1–6), 121–132. https://doi.org/10.1007/s12645-011-0022-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. A. Mishra, S. K. Tripathy, R. Wahab, S. H. Jeong, I. Hwang, Y. B. Yang, Y. S. Kim, H. S. Shin, and S. . Il. . Yun (2011). Microbial synthesis of gold nanoparticles using the fungus Penicillium brevicompactum and their cytotoxic effects against mouse mayo blast cancer C2C12 cells. Appl. Microbiol. Biotechnol. 92 (3), 617–630. https://doi.org/10.1007/s00253-011-3556-0.

    Article  CAS  PubMed  Google Scholar 

  57. M. Jeyaraj, R. Arun, G. Sathishkumar, D. Mubarakali, M. Rajesh, G. Sivanandhan, G. Kapildev, M. Manickavasagam, N. Thajuddin, and A. Ganapathi (2014). An evidence on G2/M arrest, DNA damage and caspase mediated apoptotic effect of biosynthesized gold nanoparticles on human cervical carcinoma cells (HeLa). Mater. Res. Bull. 52, 15–24. https://doi.org/10.1016/j.materresbull.2013.12.060.

    Article  CAS  Google Scholar 

  58. D. Raghunandan, B. Ravishankar, G. Sharanbasava, D. B. Mahesh, V. Harsoor, M. S. Yalagatti, M. Bhagawanraju, and A. Venkataraman (2011). Anti-cancer studies of noble metal nanoparticles synthesized using different plant extracts. Cancer Nanotechnol. 2 (1–6), 57–65. https://doi.org/10.1007/s12645-011-0014-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. H. K. Kim, M. J. Choi, S. H. Cha, Y. K. Koo, S. H. Jun, S. Cho, and Y. Park (2013). Earthworm extracts utilized in the green synthesis of gold nanoparticles capable of reinforcing the anticoagulant activities of heparin. Nanoscale Res. Lett. 8 (1), 1–7. https://doi.org/10.1186/1556-276X-8-542.

    Article  CAS  Google Scholar 

  60. K. P. Kumar, W. Paul, and C. P. Sharma (2011). Green synthesis of gold nanoparticles with Zingiber officinale extract: characterization and blood compatibility. Process Biochem. 46 (10), 2007–2013. https://doi.org/10.1016/j.procbio.2011.07.011.

    Article  CAS  Google Scholar 

  61. S. Khaleel Basha, K. Govindaraju, R. Manikandan, J. S. Ahn, E. Y. Bae, and G. Singaravelu (2010). Phytochemical mediated gold nanoparticles and their PTP 1B inhibitory activity. Colloids Surf. B 75 (2), 405–409. https://doi.org/10.1016/j.colsurfb.2009.09.008.

    Article  CAS  Google Scholar 

  62. P. Daisy and K. Saipriya (2012). Biochemical analysis of Cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus. Int. J. Nanomed. 7, 1189–1202. https://doi.org/10.2147/IJN.S26650.

    Article  CAS  Google Scholar 

  63. A. Muthuvel, K. Adavallan, K. Balamurugan, and N. Krishnakumar (2014). Biosynthesis of gold nanoparticles using Solanum nigrum leaf extract and screening their free radical scavenging and antibacterial properties. Biomed. Prev. Nutr. 4 (2), 325–332. https://doi.org/10.1016/j.bionut.2014.03.004.

    Article  Google Scholar 

  64. D. MubarakAli, J. Arunkumar, K. H. Nag, K. A. SheikSyedIshack, E. Baldev, D. Pandiaraj, and N. Thajuddin (2013). Gold nanoparticles from Pro and eukaryotic photosynthetic microorganisms-comparative studies on synthesis and its application on biolabelling. Colloids Surf. B 103, 166–173. https://doi.org/10.1016/j.colsurfb.2012.10.014.

    Article  CAS  Google Scholar 

  65. B. Nair and T. Pradeep (2002). Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst. Growth Des. 2 (4), 293–298.

    Article  CAS  Google Scholar 

  66. B. Ankamwar, M. Chaudhary, and M. Sastry (2005). Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor sensing. Synth. React. Inorg. Metal-Org. Nano-Metal Chem. 35 (1), 19–26. https://doi.org/10.1081/SIM-200047527.

    Article  CAS  Google Scholar 

  67. M. R. Bindhu and M. Umadevi (2014). Silver and gold nanoparticles for sensor and antibacterial applications. Spectrochim. Acta A 128, 37–45. https://doi.org/10.1016/j.saa.2014.02.119.

    Article  CAS  Google Scholar 

  68. E. Torres-Chavolla, R. J. Ranasinghe, and E. C. Alocilja (2010). Characterization and functionalization of biogenic gold nanoparticles for biosensing enhancement. IEEE Trans. Nanotechnol. 9 (5), 533–538. https://doi.org/10.1109/TNANO.2010.2052926.

    Article  Google Scholar 

  69. C. Sicard, R. Brayner, J. Margueritat, M. Hémadi, A. Couté, C. Yéprémian, C. Djediat, J. Aubard, F. Fiévet, J. Livage, and T. Coradin (2010). Nano-gold biosynthesis by silica-encapsulated micro-algae: a “living” bio-hybrid material. J. Mater. Chem. 20 (42), 9342–9347. https://doi.org/10.1039/c0jm01735c.

    Article  CAS  Google Scholar 

  70. B. Zheng, S. Xie, L. Qian, H. Yuan, D. Xiao, and M. M. F. Choi (2011). Gold nanoparticles-coated eggshell membrane with immobilized glucose oxidase for fabrication of glucose biosensor. Sens. Actuators B 152 (1), 49–55. https://doi.org/10.1016/j.snb.2010.09.051.

    Article  CAS  Google Scholar 

  71. P. Clarance, B. Luvankar, J. Sales, A. Khusro, P. Agastian, J. C. Tack, M. M. Al Khulaifi, H. A. AL-Shwaiman, A. M. Elgorban, A. Syed, and H. J. Kim (2020). Green synthesis and characterization of gold nanoparticles using endophytic fungi Fusarium solani and its in-vitro anticancer and biomedical applications. Saudi J. Biol. Sci. 27 (2), 706–712. https://doi.org/10.1016/j.sjbs.2019.12.026.

    Article  CAS  PubMed  Google Scholar 

  72. A. Bankar, B. Joshi, A. Ravi Kumar, and S. Zinjarde (2010). Banana peel extract mediated synthesis of gold nanoparticles. Colloids Surf. B 80 (1), 45–50. https://doi.org/10.1016/j.colsurfb.2010.05.029.

    Article  CAS  Google Scholar 

  73. S. K. Kumar, R. Amutha, P. Arumugam, and S. Berchmans (2011). Synthesis of gold nanoparticles: an ecofriendly approach using hansenula anomala. ACS Appl. Mater. Interfaces 3 (5), 1418–1425. https://doi.org/10.1021/am200443j.

    Article  CAS  Google Scholar 

  74. S. Sadhasivam, P. Shanmugam, M. Veerapandian, R. Subbiah, and K. Yun (2012). Biogenic synthesis of multidimensional gold nanoparticles assisted by Streptomyces hygroscopicus and its electrochemical and antibacterial properties. BioMetals 25 (2), 351–360. https://doi.org/10.1007/s10534-011-9506-6.

    Article  CAS  PubMed  Google Scholar 

  75. K. Mohan Kumar, B. K. Mandal, M. Sinha, and V. Krishnakumar (2012). Terminalia chebula mediated green and rapid synthesis of gold nanoparticles. Spectrochim. Acta A 86, 490–494. https://doi.org/10.1016/j.saa.2011.11.001.

    Article  CAS  Google Scholar 

  76. N. Abdel-Raouf, N. M. Al-Enazi, and I. B. M. Ibraheem (2017). Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arab. J. Chem. 10, 3029–3039. https://doi.org/10.1016/j.arabjc.2013.11.044.

    Article  CAS  Google Scholar 

  77. M. M. Abdel-Kareem and A. A. Zohri (2018). Extracellular mycosynthesis of gold nanoparticles using Trichoderma hamatum: optimization, characterization and antimicrobial activity. Lett. Appl. Microbiol. 67 (5), 465–475. https://doi.org/10.1111/lam.13055.

    Article  CAS  PubMed  Google Scholar 

  78. T. Ahmad, M. A. Bustam, M. Irfan, M. Moniruzzaman, H. M. Anwaar Asghar, and S. Bhattacharjee (2018). Green synthesis of stabilized spherical shaped gold nanoparticles using novel aqueous Elaeis guineensis (oil palm) leaves extract. J. Mol. Struct. 1159, 167–173. https://doi.org/10.1016/j.molstruc.2017.11.095.

    Article  CAS  Google Scholar 

  79. L. Du, H. Jiang, X. Liu, and E. Wang (2007). Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin. Electrochem. Commun. 9 (5), 1165–1170. https://doi.org/10.1016/j.elecom.2007.01.007.

    Article  CAS  Google Scholar 

  80. M. J. Uddin, T. R. Middya, B. Chaudhuri, and H. Sakata (2014). Destruction of percolative network using green synthesized gold nanoparticles: Formation of high dielectric material. Polymer 55 (1), 15–21. https://doi.org/10.1016/j.polymer.2013.11.013.

    Article  CAS  Google Scholar 

  81. L. Li and Z. Zhang (2016). Biosynthesis of gold nanoparticles using green alga Pithophora oedogonia with their electrochemical performance for determining carbendazim in soil. Int. J. Electrochem. Sci. 11 (6), 4550–4559. https://doi.org/10.20964/2016.06.13.

    Article  CAS  Google Scholar 

  82. S. Ghosh, S. Patil, M. Ahire, R. Kitture, D. D. Gurav, A. M. Jabgunde, S. Kale, K. Pardesi, V. Shinde, J. Bellare, D. D. Dhavale, and B. A. Chopade (2012). Gnidia glauca flower extract mediated synthesis of gold nanoparticles and evaluation of its chemocatalytic potential. J. Nanobiotechnol. 10, 1–9. https://doi.org/10.1186/1477-3155-10-17.

    Article  CAS  Google Scholar 

  83. S. Aswathy Aromal and D. Philip (2012). Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity. Spectrochim. Acta A 97, 1–5. https://doi.org/10.1016/j.saa.2012.05.083.

    Article  CAS  Google Scholar 

  84. N. Gupta, H. P. Singh, and R. K. Sharma (2010). Single-pot synthesis: plant mediated gold nanoparticles catalyzed reduction of methylene blue in presence of stannous chloride. Colloids Surf. A 367 (1–3), 102–107. https://doi.org/10.1016/j.colsurfa.2010.06.022.

    Article  CAS  Google Scholar 

  85. G. Zhan, M. Du, D. Sun, J. Huang, X. Yang, Y. Ma, A. R. Ibrahim, and Q. Li (2011). Vapor-phase propylene epoxidation with H2/O2 over bioreduction Au/TS-1 catalysts: synthesis, characterization, and optimization. Ind. Eng. Chem. Res. 50 (15), 9019–9026. https://doi.org/10.1021/ie200099z.

    Article  CAS  Google Scholar 

  86. J. Huang, C. Liu, D. Sun, Y. Hong, M. Du, T. Odoom-Wubah, W. Fang, and Q. Li (2014). Biosynthesized gold nanoparticles supported over TS-1 toward efficient catalyst for epoxidation of styrene. Chem. Eng. J. 235, 215–223. https://doi.org/10.1016/j.cej.2013.09.035.

    Article  CAS  Google Scholar 

  87. Y. Huo, P. Singh, Y. J. Kim, V. Soshnikova, J. Kang, J. Markus, S. Ahn, V. Castro-Aceituno, R. Mathiyalagan, M. Chokkalingam, K. S. Bae, and D. C. Yang (2018). Biological synthesis of gold and silver chloride nanoparticles by Glycyrrhiza uralensis and in vitro applications. Artif. Cells Nanomed. Biotechnol. 46 (2), 303–312. https://doi.org/10.1080/21691401.2017.1307213.

    Article  CAS  PubMed  Google Scholar 

  88. S. Balasubramanian, S. M. J. Kala, T. L. Pushparaj, and P. V. Kumar (2019). Biofabrication of gold nanoparticles using Cressa cretica leaf extract and evaluation of catalytic and antibacterial efficacy. Nano Biomed. Eng. 11 (1), 58–66. https://doi.org/10.5101/nbe.v11i1.p58-66.

    Article  CAS  Google Scholar 

  89. K. Wongyai, P. Wintachai, R. Maungchang, and P. Rattanakit (2020). Exploration of the antimicrobial and catalytic properties of gold nanoparticles greenly synthesized by Cryptolepis buchanani Roem. and Schult extract. J. Nanomater. 2020, 1–11. https://doi.org/10.1155/2020/1320274.

    Article  CAS  Google Scholar 

  90. T. T. Vo, T. T. N. Nguyen, T. T. T. Huynh, T. T. T. Vo, T. T. N. Nguyen, D. T. Nguyen, V. S. Dang, C. H. Dang, and T. D. Nguyen (2019). Biosynthesis of silver and gold nanoparticles using aqueous extract from Crinum latifolium leaf and their applications forward antibacterial effect and wastewater treatment. J. Nanomater. 2019, 1–15. https://doi.org/10.1155/2019/8385935.

    Article  CAS  Google Scholar 

  91. A. Bhargava, N. Jain, M. A. Khan, V. Pareek, R. V. Dilip, and J. Panwar (2016). Utilizing metal tolerance potential of soil fungus for efficient synthesis of gold nanoparticles with superior catalytic activity for degradation of rhodamine B. J. Environ. Manage. 183, 22–32. https://doi.org/10.1016/j.jenvman.2016.08.021.

    Article  CAS  PubMed  Google Scholar 

  92. B. Bonigala, B. Kasukurthi, V. V. Konduri, U. K. Mangamuri, R. Gorrepati, and S. Poda (2018). Green synthesis of silver and gold nanoparticles using Stemona tuberosa Lour and screening for their catalytic activity in the degradation of toxic chemicals. Environ. Sci. Pollut. Res. 25 (32), 32540–32548. https://doi.org/10.1007/s11356-018-3105-9.

    Article  CAS  Google Scholar 

  93. M. P. Desai, G. M. Sangaokar, and K. D. Pawar (2018). Kokum fruit mediated biogenic gold nanoparticles with photoluminescent, photocatalytic and antioxidant activities. Process Biochem. 70, 188–197. https://doi.org/10.1016/j.procbio.2018.03.027.

    Article  CAS  Google Scholar 

  94. D. Baruah, M. Goswami, R. N. S. Yadav, A. Yadav, and A. M. Das (2018). Biogenic synthesis of gold nanoparticles and their application in photocatalytic degradation of toxic dyes. J. Photochem. Photobiol. B 186, 51–58. https://doi.org/10.1016/j.jphotobiol.2018.07.002.

    Article  CAS  PubMed  Google Scholar 

  95. N. Chakraborty, A. Banerjee, S. Lahiri, A. Panda, A. N. Ghosh, and R. Pal (2009). Biorecovery of gold using cyanobacteria and an eukaryotic alga with special reference to nanogold formation—a novel phenomenon. J. Appl. Phycol. 21 (1), 145–152. https://doi.org/10.1007/s10811-008-9343-3.

    Article  CAS  Google Scholar 

  96. K. Govindaraju, R. Vasantharaja, K. S. Uma Suganya, S. Anbarasu, K. Revathy, A. Pugazhendhi, D. Karthickeyan, and G. Singaravelu (2020). Unveiling the anticancer and antimycobacterial potentials of bioengineered gold nanoparticles. Process Biochem. 96, 213–219. https://doi.org/10.1016/j.procbio.2020.06.016.

    Article  CAS  Google Scholar 

  97. H. M. Manjunath, C. G. Joshi, and N. G. Raju (2017). Biofabrication of gold nanoparticles using marine endophytic fungus—Penicillium citrinum. IET Nanobiotechnol. 11 (1), 40–44. https://doi.org/10.1049/iet-nbt.2016.0065.

    Article  PubMed  Google Scholar 

  98. S. Valsalam, P. Agastian, G. A. Esmail, A. K. M. Ghilan, N. A. Al-Dhabi, and M. V. Arasu (2019). Biosynthesis of silver and gold nanoparticles using Musa acuminata colla flower and its pharmaceutical activity against bacteria and anticancer efficacy. J. Photochem. Photobiol. B 201, 111–670. https://doi.org/10.1016/j.jphotobiol.2019.111670.

    Article  CAS  Google Scholar 

  99. S. Satpathy, A. Patra, B. Ahirwar, and M. D. Hussain (2020). Process optimization for green synthesis of gold nanoparticles mediated by extract of Hygrophila spinosa T. Anders and their biological applications. Physica E 121, 113–830. https://doi.org/10.1016/j.physe.2019.113830.

    Article  CAS  Google Scholar 

  100. M. H. Hashim and M. H. Alkhafaji (2018). Biosynthesis of gold nanoparticles by food origin. Biochem. Cell Arch. 18 (2), 1–8.

    Google Scholar 

  101. N. U. Islam, K. Jalil, M. Shahid, A. Rauf, N. Muhammad, A. Khan, M. R. Shah, and M. A. Khan (2019). Green synthesis and biological activities of gold nanoparticles functionalized with Salix alba. Arab. J. Chem. 12 (8), 2914–2925. https://doi.org/10.1016/j.arabjc.2015.06.025.

    Article  CAS  Google Scholar 

  102. D. Dhamecha, S. Jalalpure, and K. Jadhav (2016). Nepenthes khasiana mediated synthesis of stabilized gold nanoparticles: characterization and biocompatibility studies. J. Photochem. Photobiol. B 154, 108–117. https://doi.org/10.1016/j.jphotobiol.2015.12.002.

    Article  CAS  PubMed  Google Scholar 

  103. S. S. Shankar, A. Rai, A. Ahmad, M. Sastry (2005). Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings. Am. Chem. Soc. 11, 566–572.

    Google Scholar 

  104. A. Mohammed Fayaz, M. Girilal, R. Venkatesan, and P. T. Kalaichelvan (2011). Biosynthesis of anisotropic gold nanoparticles using Maduca longifolia extract and their potential in infrared absorption. Colloids Surf. B 88 (1), 287–291. https://doi.org/10.1016/j.colsurfb.2011.07.003.

    Article  CAS  Google Scholar 

  105. S. A. Dahoumane, C. Yéprémian, C. Djédiat, A. Couté, F. Fiévet, T. Coradin, and R. Brayner (2016). Improvement of kinetics, yield, and colloidal stability of biogenic gold nanoparticles using living cells of Euglena gracilis microalga. J. Nanopart. Res. 18 (3), 1–12. https://doi.org/10.1007/s11051-016-3378-1.

    Article  CAS  Google Scholar 

  106. B. C. Choudhary, D. Paul, T. Gupta, S. R. Tetgure, V. J. Garole, A. U. Borse, and D. J. Garole (2017). Photocatalytic reduction of organic pollutant under visible light by green route synthesized gold nanoparticles. J. Environ. Sci. (China) 55, 236–246. https://doi.org/10.1016/j.jes.2016.05.044.

    Article  CAS  PubMed  Google Scholar 

  107. S. M. I. Alexeree, M. A. Sliem, R. M. EL-Balshy, R. M. Amin, and M. A. Harith (2017). Exploiting biosynthetic gold nanoparticles for improving the aqueous solubility of metal-free phthalocyanine as biocompatible PDT agent. Mater. Sci. Eng. C 76, 727–734. https://doi.org/10.1016/j.msec.2017.03.129.

    Article  CAS  Google Scholar 

  108. P. Singh, S. Pandit, M. Beshay, V. R. S. S. Mokkapati, J. Garnaes, M. E. Olsson, A. Sultan, A. Mackevica, R. V. Mateiu, H. Lütken, A. E. Daugaard, A. Baun, and I. Mijakovic (2018). Anti-biofilm effects of gold and silver nanoparticles synthesized by the Rhodiola rosea rhizome extracts. Artif. Cells Nanomed. Biotechnol. 46 (sup3), 886–899. https://doi.org/10.1080/21691401.2018.1518909.

    Article  CAS  Google Scholar 

  109. A. Demirbas, K. Büyükbezirci, C. Celik, E. Kislakci, Z. Karaagac, E. Gokturk, A. Kati, B. Cimen, V. Yilmaz, and I. Ocsoy (2019). Synthesis of long-term stable gold nanoparticles benefiting from red raspberry (Rubus idaeus), strawberry (Fragaria ananassa), and blackberry (Rubus fruticosus) extracts-gold ion complexation and investigation of reaction conditions. ACS Omega 4 (20), 18637–18644. https://doi.org/10.1021/acsomega.9b02469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. S. N. Correa, A. M. Naranjo, and A. P. Herrera (2016). Biosynthesis and characterization of gold nanoparticles using extracts of Tamarindus indica L leaves. J. Phys.: Conf. Ser. 687 (1), 1–5. https://doi.org/10.1088/1742-6596/687/1/012082.

    Article  CAS  Google Scholar 

  111. N. Pazos-Pérez, Y. Gao, M. Hilgendorff, S. Irsen, J. Pérez-Juste, M. Spasova, M. Farle, L. M. Liz-Marzán, and M. Giersig (2007). Magnetic—noble metal nanocomposites with morphology-dependent optical response. Chem. Mater. 19 (18), 4415–4422. https://doi.org/10.1021/cm070248o.

    Article  CAS  Google Scholar 

  112. B. P. Isaacoff and K. A. Brown (2017). Progress in top-down control of bottom-up assembly. Nano Lett. 17 (11), 6508–6510. https://doi.org/10.1021/acs.nanolett.7b04479.

    Article  CAS  PubMed  Google Scholar 

  113. M. Nadeem, B. H. Abbasi, M. Younas, W. Ahmad, and T. Khan (2017). A review of the green syntheses and anti-microbial applications of gold nanoparticles. Green Chem. Lett. Rev. 10 (4), 216–227. https://doi.org/10.1080/17518253.2017.1349192.

    Article  CAS  Google Scholar 

  114. S. Tikariha, S. Singh, S. Banerjee, and A. Vidyarthi (2012). Biosynthesis of gold nanoparticles, scope and application: a review. Int. J. Pharm. Sci. Res. 3 (6), 1603–1615.

    CAS  Google Scholar 

  115. A. I. Usman, A. A. Aziz, and O. A. Noqta (2019). Application of green synthesis of gold nanoparticles: a review. J. Teknol. 81 (1), 171–182. https://doi.org/10.11113/jt.v81.11409.

    Article  Google Scholar 

  116. D. Sharma, S. Kanchi, and K. Bisetty (2019). Biogenic synthesis of nanoparticles: a review. Arab. J. Chem. 12 (8), 3576–3600. https://doi.org/10.1016/j.arabjc.2015.11.002.

    Article  CAS  Google Scholar 

  117. L. Dykman and N. Khlebtsov (1992). Gold nanoparticles in biology and medicine: recent advances and prospects. Acta Nat. 51 (3), 65–69.

    Google Scholar 

  118. O. Salata (2005). Applications of nanoparticles in biology and medicine. J. Nanobiotechnol. 12, 1–12.

    Google Scholar 

  119. A. Kardani, H. Yaghoobi, A. Alibakhshi, and M. Khatami (2020). Inhibition of miR-155 in MCF-7 breast cancer cell line by gold nanoparticles functionalized with antagomir and AS1411 aptamer. J. Cell. Physiol. 235 (10), 6887–6895.

    Article  CAS  PubMed  Google Scholar 

  120. Pandi Boomi, G. P. Poorani, S. Selvam, S. Palanisamy, S. Jegatheeswaran, K. Anand, C. Balakumar, K. Premkumar, and H. G. Prabu (2020). Green biosynthesis of gold nanoparticles using Croton sparsiflorus leaves extract and evaluation of UV protection, antibacterial and anticancer applications. Appl. Organomet. Chem. 34 (5), 1–13. https://doi.org/10.1002/aoc.5574.

    Article  CAS  Google Scholar 

  121. E. C. Dreaden, M. A. Mackey, X. Huang, B. Kang, and M. A. El-Sayed (2011). Beating cancer in multiple ways using nanogold. Chem. Soc. Rev. 40 (7), 3391–3404. https://doi.org/10.1039/c0cs00180e.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. J. K. Patra and K. H. Baek (2015). Novel green synthesis of gold nanoparticles using Citrullus lanatus rind and investigation of proteasome inhibitory activity, antibacterial, and antioxidant potential. Int. J. Nanomed. 10, 7253–7264. https://doi.org/10.2147/IJN.S95483.

    Article  CAS  Google Scholar 

  123. C. Chellapandian, B. Ramkumar, P. Puja, R. Shanmuganathan, A. Pugazhendhi, and P. Kumar (2019). Gold nanoparticles using red seaweed Gracilaria verrucosa: green synthesis, characterization and biocompatibility studies. Process Biochem. 80, 58–63. https://doi.org/10.1016/j.procbio.2019.02.009.

    Article  CAS  Google Scholar 

  124. B. Sun, N. Hu, L. Han, Y. Pi, Y. Gao, and K. Chen (2019). Anticancer activity of green synthesised gold nanoparticles from Marsdenia tenacissima inhibits A549 cell proliferation through the apoptotic pathway. Artif. CellsNanomed. Biotechnol. 47 (1), 4012–4019. https://doi.org/10.1080/21691401.2019.1575844.

    Article  Google Scholar 

  125. P. Ma and R. J. Mumper (2013). Anthracycline nano-delivery systems to overcome multiple drug resistance: a comprehensive review. Nano Today 8 (3), 313–331. https://doi.org/10.1016/j.nantod.2013.04.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. S. Hemmati, Z. Joshani, A. Zangeneh, and M. M. Zangeneh (2020). Green synthesis and chemical characterization of Thymus vulgaris leaf aqueous extract conjugated gold nanoparticles for the treatment of acute myeloid leukemia in comparison to doxorubicin in a leukemic mouse model. Appl. Organomet. Chem. 34 (2), 1–14. https://doi.org/10.1002/aoc.5267.

    Article  CAS  Google Scholar 

  127. M. M. Zangeneh and A. Zangeneh (2020). Novel green synthesis of Hibiscus sabdariffa flower extract conjugated gold nanoparticles with excellent anti-acute myeloid leukemia effect in comparison to daunorubicin in a leukemic rodent model. Appl. Organomet. Chem. 34 (1), 1–13. https://doi.org/10.1002/aoc.5271.

    Article  CAS  Google Scholar 

  128. M. J. Kwon and T. J. Nam (2006). Porphyran induces apoptosis related signal pathway in AGS gastric cancer cell lines. Life Sci. 79 (20), 1956–1962. https://doi.org/10.1016/j.lfs.2006.06.031.

    Article  CAS  PubMed  Google Scholar 

  129. Q. Zhang, N. Li, G. Zhou, X. Lu, Z. Xu, and Z. Li (2003). In vivo antioxidant activity of polysaccharide fraction from Porphyra haitanesis (Rhodephyta) in aging mice. Pharmacol Res. 48 (2), 151–155. https://doi.org/10.1016/S1043-6618(03)00103-8.

    Article  CAS  PubMed  Google Scholar 

  130. G. Balasubramani, R. Ramkumar, N. Krishnaveni, A. Pazhanimuthu, T. Natarajan, R. Sowmiya, and P. Perumal (2015). Structural characterization, antioxidant and anticancer properties of gold nanoparticles synthesized from leaf extract (decoction) of Antigonon leptopus Hook. & Arn. J. Trace Elem. Med. Biol. 30, 83–89. https://doi.org/10.1016/j.jtemb.2014.11.001.

    Article  CAS  PubMed  Google Scholar 

  131. S. Vijayakumar, R. Vinayagam, M. A. V. Anand, K. Venkatachalam, K. Saravanakumar, M. H. Wang, C. Sangeetha Casimeer, K. M. Gothandam, and E. David (2020). Green synthesis of gold nanoparticle using Eclipta alba and its antidiabetic activities through regulation of Bcl-2 expression in pancreatic cell line. J. Drug Deliv. Sci. Technol. 58, 101–786. https://doi.org/10.1016/j.jddst.2020.101786.

    Article  CAS  Google Scholar 

  132. M. Khatami, F. Mosazade, M. Raeisi, M. Ghasemi, Z. Fazli, K. Arefkia, R. S. Varma, F. Borhani, and S. Khatami (2021). Simplification of gold nanoparticle synthesis with low cytotoxicity using a greener approach: opening up new possibilities. RSC Adv. 11 (6), 3288–3294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. T. Bahorun, V. S. Neergheen, and O. I. Aruoma (2005). Phytochemical constituents of Cassia fistula. Afr. J. Biotechnol. 4 (13), 1530–1540. https://doi.org/10.4314/ajfand.v4i13.71772.

    Article  CAS  Google Scholar 

  134. K. Saha, S. S. Agasti, C. Kim, X. Li, and V. M. Rotello (2012). Gold nanoparticles in chemical and biological sensing. Chem. Rev. 112 (5), 2739–2779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. B. Zheng, L. Qian, H. Yuan, D. Xiao, X. Yang, M. C. Paau, and M. M. F. Choi (2010). Preparation of gold nanoparticles on eggshell membrane and their biosensing application. Talanta 82 (1), 177–183. https://doi.org/10.1016/j.talanta.2010.04.014.

    Article  CAS  PubMed  Google Scholar 

  136. J. Ying, Y. Zheng, H. Zhang, and L. Fu (2020). Room temperature biosynthesis of gold nanoparticles with Lycoris aurea leaf extract for the electrochemical determination of aspririn. Revista Mexicana de Ingeniería Química 12 (3), 585–592.

    Google Scholar 

  137. M. J. Hajipour, K. M. Fromm, A. Akbar Ashkarran, D. Jimenez de Aberasturi, I. R. de Larramendi, T. Rojo, V. Serpooshan, W. J. Parak, and M. Mahmoudi (2012). Antibacterial properties of nanoparticles. Trends Biotechnol. 30 (10), 499–511. https://doi.org/10.1016/j.tibtech.2012.06.004.

    Article  CAS  PubMed  Google Scholar 

  138. M. L. Cohen (1994). Changing patterns of infectious diseases. Communicable disease report. CDR Wkly 4 (43), 1–6.

    Google Scholar 

  139. H. H. Lara, N. V. Ayala-Núñez, L. C. I. del Turrent, and C. R. Padilla (2010). Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J. Microbiol. Biotechnol. 26 (4), 615–621. https://doi.org/10.1007/s11274-009-0211-3.

    Article  CAS  Google Scholar 

  140. J. S. Kim, E. Kuk, K. N. Yu, J. H. Kim, S. J. Park, H. J. Lee, S. H. Kim, Y. K. Park, Y. H. Park, C. Y. Hwang, Y. K. Kim, Y. S. Lee, D. H. Jeong, and M. H. Cho (2007). Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 3 (1), 95–101. https://doi.org/10.1016/j.nano.2006.12.001.

    Article  CAS  Google Scholar 

  141. J. Ramyadevi, K. Jeyasubramanian, A. Marikani, G. Rajakumar, and A. A. Rahuman (2012). Synthesis and antimicrobial activity of copper nanoparticles. Mater. Lett. 71, 114–116. https://doi.org/10.1016/j.matlet.2011.12.055.

    Article  CAS  Google Scholar 

  142. R. V. Rai and J. A. Bai (2017). Nanoparticles and their potential application as antimicrobials in the food industry. Sci Against Microb Pathog: Commun Curr Res Technol Adv. https://doi.org/10.1016/b978-0-12-804303-5.00016-x.

    Article  Google Scholar 

  143. C. Su, K. Huang, H. H. Li, Y. G. Lu, and D. L. Zheng (2020). Antibacterial properties of functionalized gold nanoparticles and their application in oral biology. J Nanomater. https://doi.org/10.1155/2020/5616379.

    Article  Google Scholar 

  144. H. P. Borase, C. D. Patil, R. K. Suryawanshi, S. H. Koli, B. V. Mohite, G. Benelli, and S. V. Patil (2017). Mechanistic approach for fabrication of gold nanoparticles by Nitzschia diatom and their antibacterial activity. Bioprocess Biosyst. Eng. 40 (10), 1437–1446. https://doi.org/10.1007/s00449-017-1801-3.

    Article  CAS  PubMed  Google Scholar 

  145. C. Wang, P. Singh, Y. J. Kim, R. Mathiyalagan, D. Myagmarjav, D. Wang, C. G. Jin, and D. C. Yang (2016). Characterization and antimicrobial application of biosynthesized gold and silver nanoparticles by using Microbacterium resistens. Artif. Cells Nanomed. Biotechnol. 44 (7), 1714–1721. https://doi.org/10.3109/21691401.2015.1089253.

    Article  CAS  PubMed  Google Scholar 

  146. T. S. Dhas, P. Sowmiya, V. G. Kumar, M. Ravi, K. Suthindhiran, J. F. Borgio, G. Narendrakumar, V. R. Kumar, V. Karthick, and C. M. V. Kumar (2020). Antimicrobial effect of Sargassum plagiophyllum mediated gold nanoparticles on Escherichia coli and Salmonella typhi. Biocatal. Agric. Biotechnol. 26, 101–627. https://doi.org/10.1016/j.bcab.2020.101627.

    Article  Google Scholar 

  147. M. N. Chen, C. F. Chan, S. L. Huang, and Y. S. Lin (2019). Green biosynthesis of gold nanoparticles using Chenopodium formosanum shell extract and analysis of the particles’ antibacterial properties. J. Sci. Food Agric. 99 (7), 3693–3702. https://doi.org/10.1002/jsfa.9600.

    Article  CAS  PubMed  Google Scholar 

  148. P. Boomi, R. M. Ganesan, G. Poorani, H. Gurumallesh Prabu, S. Ravikumar, and J. Jeyakanthan (2019). Biological synergy of greener gold nanoparticles by using Coleus aromaticus leaf extract. Mater. Sci. Eng. C 99, 202–210. https://doi.org/10.1016/j.msec.2019.01.105.

    Article  CAS  Google Scholar 

  149. S. Guo and E. Wang (2007). Synthesis and electrochemical applications of gold nanoparticles. Anal. Chim. Acta 598 (2), 181–192. https://doi.org/10.1016/j.aca.2007.07.054.

    Article  CAS  PubMed  Google Scholar 

  150. M. J. Uddin, J. Sannigrahi, M. Masud, D. Bhadra, and B. Chaudhuri (2012). High dielectric permittivity and percolate behavior of polyvinyl alcohol/potassium dihydrogen phosphate composites. J. Appl. Polym. Sci. 116 (5), 1–8. https://doi.org/10.1002/app.

    Article  Google Scholar 

  151. M. Haruta, T. Kobayashi, H. Sana, and N. Yamada (1987). Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 ºC. Chem. Lett. 2, 405–408.

    Article  Google Scholar 

  152. B. Hvolbæk, T. V. W. Janssens, B. S. Clausen, H. Falsig, C. H. Christensen, and J. K. Nørskov (2007). Catalytic activity of Au nanoparticles. Nano Today 2 (4), 14–18.

    Article  Google Scholar 

  153. S. Borhamdin, M. Shamsuddin, and A. Alizadeh (2016). Biostabilised icosahedral gold nanoparticles: synthesis, cyclic voltammetric studies and catalytic activity towards 4-nitrophenol reduction. J. Exp. Nanosci. 11 (7), 518–530. https://doi.org/10.1080/17458080.2015.1090021.

    Article  CAS  Google Scholar 

  154. C. Mack, B. Wilhelmi, J. R. Duncan, and J. E. Burgess (2007). Biosorption of precious metals. Biotechnol. Adv. 25 (3), 264–271. https://doi.org/10.1016/j.biotechadv.2007.01.003.

    Article  CAS  PubMed  Google Scholar 

  155. N. Das (2010). Recovery of precious metals through biosorption—a review. Hydrometallurgy 103 (1–4), 180–189. https://doi.org/10.1016/j.hydromet.2010.03.016.

    Article  CAS  Google Scholar 

  156. A. Dzimitrowicz, P. Jamróz, G. C. diCenzo, I. Sergiel, T. Kozlecki, and P. Pohl (2019). Preparation and characterization of gold nanoparticles prepared with aqueous extracts of Lamiaceae plants and the effect of follow-up treatment with atmospheric pressure glow microdischarge. Arab. J. Chem. 12 (8), 4118–4130. https://doi.org/10.1016/j.arabjc.2016.04.004.

    Article  CAS  Google Scholar 

  157. M. Koperuncholan (2015). Bioreduction of chloroauric acid (HAuCl4) for the synthesis of gold nanoparticles (GNPs): a special empathies of pharmacological activity. Int. J. Phytopharm. 3 (2), 72–80. https://doi.org/10.7439/ijpp.

    Article  Google Scholar 

  158. C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li (2005). Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J. Phys. Chem. B 109 (29), 13857–13870.

    Article  CAS  PubMed  Google Scholar 

  159. M. Tréguer-Delapierre, J. Majimel, S. Mornet, E. Duguet, and S. Ravaine (2008). Synthesis of non-spherical gold particles. Gold Bull. 41 (2), 195–207.

    Article  Google Scholar 

  160. R. Morarescu, H. Shen, R. A. Vallée, B. Maes, B. Kolaric, and P. Damman (2012). Exploiting the localized surface plasmon modes in gold triangular nanoparticles for sensing applications. J. Mater. Chem. 22 (23), 11537–11542.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support received from the faculty, Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kannan Deepa.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepa, K., Sridhar, A. & Panda, T. Biogenic Gold Nanoparticles: Current Applications and Future Prospects. J Clust Sci 34, 1163–1183 (2023). https://doi.org/10.1007/s10876-022-02304-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02304-8

Keywords

Navigation