Skip to main content
Log in

Physicochemical–Electrochemical Characterization of the Nanocomposite Chitosan-Coated Magnetite Nanoparticles

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Magnetite nanoparticles (MNPs) have attracted great interest due to their low human toxicity and applications in different fields. Electrochemical methods have been proposed to obtain this type of nanoparticles, allowing better control of the size and size distribution than conventional strategies. Additionally, it has been reported that when they are functionalized with chitosan, they become more stable and more effective for some applications. MNPs were electrochemically synthesized by the asymmetrical potential pulses method, then functionalized with chitosan, and subsequently characterized by physicochemical and electrochemical techniques. The MNPs synthesized by applying potential pulses showed sizes of 21.2 ± 3.6 nm by X-ray diffraction (XRD) and 28.5 ± 8.3 nm by Transmission Electron Microscopy (TEM); as well as size of 18.5 ± 6.3 nm by XRD and 32.4 ± 9.5 nm by TEM in chitosan-coated MNPs (MNPs-Chitosan). Additionally, Dynamic Light Scattering demonstrated a hydrodynamic size of 346.8 ± 35.1 nm in MNPs and 224.2 ± 21.6 nm in MNPs-Chitosan. Furthermore, their morphology and colloidal stability were evidenced by Scanning Electron Microscopy and Zeta potential. At the same time, the functionalization of magnetite with chitosan in MNPs-Chitosan was demonstrated through characteristic bands and weight losses by Fourier Transform Infrared Spectroscopy and Thermogravimetry. Finally, the redox reactions and reactivity of MNPs and MNP-Chitosan were studied by Linear Sweep Voltammetry, Cyclic Voltammetry and Electrochemical Impedance Spectroscopy. Likewise, it was shown that the protection of chitosan offers stability to the MNPs; however, there is a facility of MNPs-Chitosan to transfer electrons, which is helpful for their application in different areas such as biomedical, environmental, and food.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

Research data will be available to reviewers, if required.

Code Availability

Not applicable.

References

  1. N. Tran and T. J. Webster (2010). J. Mater. Chem. https://doi.org/10.1039/c0jm00994f.

    Article  Google Scholar 

  2. J. K. Oh and J. M. Park (2011). Prog. Polym. Sci. https://doi.org/10.1016/j.progpolymsci.2010.08.005.

    Article  PubMed  PubMed Central  Google Scholar 

  3. A. Das, M. Raffi, C. Megaridis, D. Fragouli, C. Innocenti, and A. Athanassiou (2015). J. Nanoparticle Res. https://doi.org/10.1007/s11051-014-2856-6.

    Article  Google Scholar 

  4. I. Neamtu, A. P. Chiriac, L. E. Nita, N. Tudorachi, and A. Diaconu (2015). J. Nanoparticle Res. https://doi.org/10.1007/s11051-015-3059-5.

    Article  Google Scholar 

  5. M. Singh, N. Sviridenkova, N. Timur, A. Savchenko, I. Shetinin, and A. Majouga (2016). J. Clust. Sci. https://doi.org/10.1007/s10876-016-1007-x.

    Article  Google Scholar 

  6. P. Dallas, V. Georgakilas, D. Niarchos, P. Komninou, T. Kehagias, and D. Petridis (2006). Nanotechnology. https://doi.org/10.1088/0957-4484/17/8/043.

    Article  Google Scholar 

  7. J. M. Zuluaga (2011). Rev. EIA. https://doi.org/10.24050/REIA.V8I16.443.

    Article  Google Scholar 

  8. S. Mashjoor, M. Yousefzadi, H. Zolgharnain, E. Kamrani, and M. Alishahi (2018). Environ. Pollut. https://doi.org/10.1016/j.envpol.2018.02.036.

    Article  PubMed  Google Scholar 

  9. S. Jamil and M. R. S. A. Janjua (2017). J. Clust. Sci. https://doi.org/10.1007/s10876-017-1256-3.

    Article  Google Scholar 

  10. R. Ghosh Chaudhuri and S. Paria (2012). Chem. Rev. https://doi.org/10.1021/cr100449n.

    Article  PubMed  Google Scholar 

  11. C. Gómez-Polo, S. Larumbe, L. F. Barquín, and L. R. Fernández (2016). J. Nanoparticle Res. https://doi.org/10.1007/s11051-016-3426-x.

    Article  Google Scholar 

  12. R. Strobel and S. E. Pratsinis (2009). Adv. Powder Technol. https://doi.org/10.1016/j.apt.2008.08.002.

    Article  Google Scholar 

  13. A. A. Velásquez, C. C. Marín, and J. P. Urquijo (2018). J. Nanoparticle Res. https://doi.org/10.1007/s11051-018-4166-x.

    Article  Google Scholar 

  14. M. Salehipour, S. Rezaei, J. Mosafer, Z. Pakdin-Parizi, A. Motaharian, and M. Mogharabi-Manzari (2021). J. Nanoparticle Res. https://doi.org/10.1007/s11051-021-05156-x.

    Article  Google Scholar 

  15. A. M. Schmidt (2007). Colloid Polym. Sci. https://doi.org/10.1007/s00396-007-1667-z.

    Article  Google Scholar 

  16. T.-Y. Liu, S.-H. Hu, K.-H. Liu, D.-M. Liu, and S.-Y. Chen (2008). J. Control. Release. https://doi.org/10.1016/j.jconrel.2007.12.006.

    Article  PubMed  Google Scholar 

  17. A. Elaissari (2009). Macromol. Symp. https://doi.org/10.1002/masy.200950702.

    Article  Google Scholar 

  18. R. Y. Hong, B. Feng, G. Liu, S. Wang, H. Z. Li, J. M. Ding, Y. Zheng, and D. G. Wei (2009). J. Alloys Compd. https://doi.org/10.1016/j.jallcom.2008.09.060.

    Article  Google Scholar 

  19. G. A. Kloster, D. Muraca, C. Meiorin, K. R. Pirota, N. E. Marcovich, and M. A. Mosiewicki (2015). Eur. Polym. J. https://doi.org/10.1016/j.eurpolymj.2015.09.014.

    Article  Google Scholar 

  20. P. Nehra, R. Chauhan, N. Garg, and K. Verma (2018). Br. J. Biomed. Sci. https://doi.org/10.1080/09674845.2017.1347362.

    Article  PubMed  Google Scholar 

  21. E. Piosik, P. Klimczak, M. Ziegler-Borowska, D. Chełminiak-Dudkiewicz, and T. Martyński (2020). Mater. Sci. Eng. C. https://doi.org/10.1016/j.msec.2019.110616.

    Article  Google Scholar 

  22. M. Arakha, S. Pal, D. Samantarrai, T. K. Panigrahi, B. C. Mallick, K. Pramanik, B. Mallick, and S. Jha (2015). Sci. Rep. https://doi.org/10.1038/srep14813.

    Article  PubMed  PubMed Central  Google Scholar 

  23. G. Unsoy, S. Yalcin, R. Khodadust, G. Gunduz, and U. Gunduz (2012). J. Nanoparticle Res. https://doi.org/10.1007/s11051-012-0964-8.

    Article  Google Scholar 

  24. T. M. Freire, L. M. U. Dutra, D. C. Queiroz, N. M. P. S. Ricardo, K. Barreto, J. C. Denardin, F. R. Wurm, C. P. Sousa, A. N. Correia, P. De Lima-Neto, and P. B. A. Fechine (2016). Carbohydr. Polym. https://doi.org/10.1016/j.carbpol.2016.05.095.

    Article  PubMed  Google Scholar 

  25. A. Rodríguez-López, A. Paredes-Arroyo, J. Mojica-Gomez, C. Estrada-Arteaga, J. J. Cruz-Rivera, C. G. Elías Alfaro, and R. Antaño-López (2012). J. Nanoparticle Res. https://doi.org/10.1007/s11051-012-0993-3.

    Article  Google Scholar 

  26. S. Mohammadi-Samani, R. Miri, M. Salmanpour, N. Khalighian, S. Sotoudeh, and N. Erfani (2013). Res. Pharm. Sci. 8, 25.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. A. Rodríguez-López, D. Torres-Torres, J. Mojica-Gomez, C. Estrada-Arteaga, and R. Antaño-López (2011). Electrochim. Acta. https://doi.org/10.1016/j.electacta.2010.11.039.

    Article  Google Scholar 

  28. O. A. Noqta, A. A. Aziz, I. A. Usman, and M. Bououdina (2019). J. Supercond. Nov. Magn. https://doi.org/10.1007/s10948-018-4939-6.

    Article  Google Scholar 

  29. A. Rajan, M. Sharma, and N. K. Sahu (2020). Sci. Rep. https://doi.org/10.1038/s41598-020-71703-6.

    Article  PubMed  PubMed Central  Google Scholar 

  30. M. Bashir, S. Riaz, and S. Naseem (2015). Mater. Today Proc. https://doi.org/10.1016/j.matpr.2015.11.106.

    Article  Google Scholar 

  31. R. M. Cornell and U. Schwertmann, The Iron Oxides, 2nd ed. (Wiley, Hoboken, 2003).

    Book  Google Scholar 

  32. S. H. Hussein-Al-Ali, P. Arulselvan, S. Fakurazi, M. Z. Hussein, and D. Dorniani (2014). J. Biomater. Appl. https://doi.org/10.1177/0885328213519691.

    Article  PubMed  Google Scholar 

  33. Y. Wang, B. Li, Y. Zhou, and D. Jia (2008). Polym. Adv. Technol. https://doi.org/10.1002/pat.1121.

    Article  Google Scholar 

  34. N. Shin, K. Saravanakumar, and M.-H. Wang (2019). J. Clust. Sci. https://doi.org/10.1007/s10876-019-01526-7.

    Article  Google Scholar 

  35. R. Li, G. Fu, C. Liu, D. J. McClements, Y. Wan, S. Wang, and T. Liu (2018). Int. J. Biol. Macromol. https://doi.org/10.1016/j.ijbiomac.2018.03.077.

    Article  PubMed  PubMed Central  Google Scholar 

  36. R. El-kharrag, S. S. AbdelHalim, A. Amin, and Y. E. Greish (2019). Int. J. Polym. Mater. Polym. Biomater. https://doi.org/10.1080/00914037.2018.1525725.

    Article  Google Scholar 

  37. M. F. Queiroz, K. R. T. Melo, D. A. Sabry, G. L. Sassaki, and H. A. O. Rocha (2015). Mar. Drugs. https://doi.org/10.3390/md13010141.

    Article  Google Scholar 

  38. N. Habibi (2014). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. https://doi.org/10.1016/j.saa.2014.04.039.

    Article  Google Scholar 

  39. A. Vanamudan, M. Sadhu, and P. S. Pamidimukkala (2018). J. Taiwan Inst. Chem. Eng. https://doi.org/10.1016/j.jtice.2017.12.018.

    Article  Google Scholar 

  40. V. D. Patake, T. T. Ghogare, A. D. Gulbake, and C. D. Lokhande (2019). SN Appl. Sci. https://doi.org/10.1007/s42452-019-1054-7.

    Article  Google Scholar 

  41. P. Arévalo-Cid, J. Isasi, A. C. Caballero, F. Martín-Hernández, and R. González-Rubio (2021). Boletín La Soc. Española Cerámica y Vidr. https://doi.org/10.1016/j.bsecv.2020.12.001.

    Article  Google Scholar 

  42. M. E. Peralta, R. Nisticò, F. Franzoso, G. Magnacca, L. Fernandez, M. E. Parolo, E. G. León, and L. Carlos (2019). Adsorption. https://doi.org/10.1007/s10450-019-00096-4.

    Article  Google Scholar 

  43. M. L. Salem, A. Gemeay, S. Gomaa, M. A. Aldubayan, and L. Assy (2020). J. Nanoparticle Res. https://doi.org/10.1007/s11051-020-04932-5.

    Article  Google Scholar 

  44. C. Yong, X. Chen, Q. Xiang, Q. Li, and X. Xing (2018). Bioact. Mater. https://doi.org/10.1016/j.bioactmat.2017.05.008.

    Article  PubMed  Google Scholar 

  45. M. A. Jalili, A. Allafchian, F. Karimzadeh, and F. Nasiri (2019). Int. J. Biol. Macromol. https://doi.org/10.1016/j.ijbiomac.2019.08.123.

    Article  PubMed  Google Scholar 

  46. M. S. A. Darwish, N. H. A. Nguyen, A. Ševců, and I. Stibor (2015). J. Nanomater. https://doi.org/10.1155/2015/416012.

    Article  Google Scholar 

  47. A. M. El-Khawaga, A. A. Farrag, M. A. Elsayed, G. S. El-Sayyad, and A. I. El-Batal (2020). J. Clust. Sci. https://doi.org/10.1007/s10876-020-01869-6.

    Article  Google Scholar 

  48. S. Bhattacharjee (2016). J. Control. Release. https://doi.org/10.1016/j.jconrel.2016.06.017.

    Article  PubMed  Google Scholar 

  49. Z. Sun, S. Xu, G. Dai, Y. Li, L. Lou, Q. Liu, and R. Zhu (2003). J. Chem. Phys. https://doi.org/10.1063/1.1585022.

    Article  Google Scholar 

  50. Y. Agrawal and V. Patel (2011). J. Adv. Pharm. Technol. Res. https://doi.org/10.4103/2231-4040.82950.

    Article  PubMed  PubMed Central  Google Scholar 

  51. M. A. Rahman and B. Ochiai (2018). Microsyst. Technol. https://doi.org/10.1007/s00542-017-3318-8.

    Article  Google Scholar 

  52. C. Chapa González, J. U. Navarro Arriaga, and P. E. García Casillas (2021). Polym. Polym. Compos. https://doi.org/10.1177/09673911211038461.

    Article  Google Scholar 

  53. X. Zhao, S. Zhu, Y. Song, J. Zhang, and B. Yang (2015). RSC Adv. https://doi.org/10.1039/c4ra13417f.

    Article  PubMed  Google Scholar 

  54. K. H. Kim, H. Xing, J. M. Zuo, P. Zhang, and H. Wang (2015). Micron. https://doi.org/10.1016/j.micron.2015.01.002.

    Article  PubMed  Google Scholar 

  55. G. Zhou and J. C. Yang (2004). Surf. Sci. https://doi.org/10.1016/j.susc.2004.04.046.

    Article  Google Scholar 

  56. I. Karimzadeh, H. R. Dizaji, and M. Aghazadeh (2016). J. Magn. Magn. Mater. https://doi.org/10.1016/j.jmmm.2016.05.015.

    Article  Google Scholar 

  57. I. Nurdin (2016). J. Mater. Sci. Chem. Eng. https://doi.org/10.4236/msce.2016.43005.

    Article  Google Scholar 

  58. Y. Wu, P. Deng, Y. Tian, J. Feng, J. Xiao, J. Li, J. Liu, G. Li, and Q. He (2020). J. Nanobiotechnol. https://doi.org/10.1186/s12951-020-00672-9.

    Article  Google Scholar 

  59. A. Rodríguez-López, J. J. Cruz-Rivera, C. G. Elías-Alfaro, I. Betancourt, H. Ruiz-Silva, and R. Antaño-López (2015). Mater. Sci. Eng. C. https://doi.org/10.1016/j.msec.2014.10.052.

    Article  Google Scholar 

  60. C. M. Das and M. Sudersanan (2003). J. Appl. Electrochem. https://doi.org/10.1023/A:1024187216639.

    Article  Google Scholar 

  61. P. D. Allen, N. A. Hampson, and G. J. Bignold (1979). J. Electroanal. Chem. Interfacial Electrochem. https://doi.org/10.1016/S0022-0728(79)80094-7.

    Article  Google Scholar 

  62. V. B. Fetisov, A. N. Ermakov, G. M. Belysheva, A. V. Fetisov, V. M. Kamyshov, and K. Z. Brainina (2004). J. Solid State Electrochem. https://doi.org/10.1007/s10008-004-0499-8.

    Article  Google Scholar 

  63. P. Mutombo and N. Hackerman (1997). J. Solid State Electrochem. https://doi.org/10.1007/s100080050048.

    Article  Google Scholar 

  64. A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fudamentals ans Applications (Wiley, Hoboken, 2001).

    Google Scholar 

  65. Y. Wu, J. Liu, C. Wu, Q. Zhuang, H. Chen, H. Zhang, and X. Zhang (2015). Ionics. https://doi.org/10.1007/s11581-014-1204-2.

    Article  Google Scholar 

  66. M. E. Orazem and B. Tribollet, Electrochemical Impedance Spectroscopy (Wiley, Hoboken, 2008).

    Book  Google Scholar 

  67. S. C. Pang, W. H. Khoh, and S. F. Chin (2010). J. Mater. Sci. https://doi.org/10.1007/s10853-010-4622-1.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank to CONACYT-México and to Tecnológico Nacional de México for their financial support to carry out this research through projects CONACYT INFR-2016-01-268641, CONACYT FOP02-2021-04-316948 and 6212.19-P, respectively. They also thank Dra. Claramaría Rodríguez González for her support in carrying out the TEM analysis. In the same way, we would also like to thank the authors' home institutions for all the facilities they provided for this research. A.Y. Flores-Ramírez acknowledges CONACYT for the scholarship awarded for the completion of her master's studies.

Funding

This work was financially supported by CONACYT-México and to Tecnológico Nacional de México through projects CONACYT INFR-2016-01-268641, CONACYT FOP02-2021-04-316948 and 6212.19-P, respectively.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. AYF-R carried out most of the experiments leading to the synthesis of MNPs and MNPs-Chitosan, contributed in the analyzed the data, prepared the figures, and wrote the manuscript. SA-A and MAC-L reviewed and corrected the manuscript. LAO-F performed the analysis of the samples by FT-IR and reviewed the manuscript. RA-L contributed to the realization of the TEM, Zeta potential and DLS analyzes, reviewed the EIS experiments and reviewed the manuscript. AÁ-L contributed to the discussion of the results obtained by FT-IR. AR-L and UML-G led the investigation, reviewed and discussed the results obtained in work; besides, supervised the study, reviewed, modified the text, and corrected the manuscript. The authors have no conflict of interest.

Corresponding authors

Correspondence to A. Rodríguez-López or U. M. López-García.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flores-Ramírez, A.Y., Aguilera-Aguirre, S., Chacón-López, M.A. et al. Physicochemical–Electrochemical Characterization of the Nanocomposite Chitosan-Coated Magnetite Nanoparticles. J Clust Sci 34, 1019–1035 (2023). https://doi.org/10.1007/s10876-022-02278-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02278-7

Keywords

Navigation