Skip to main content

Advertisement

Log in

Antitumor Potential of Selenium Nanoparticles (SeNPs) Against Multiple Myeloma Model in RPMI8226 Cells

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Multiple myeloma is defined as bone marrow contains higher level of plasma cells, and well-known malignant tumour of B lymphocytes. Recently, nanoparticles have been synthesised and applied in the field of biomedicine. RPMI8226 cells were treated with selenium nanoparticles (SeNPs) at various concentrations for 48 h. Cell viability, reactive oxygen species (ROS), cell morphology, ATP level, apoptosis, and caspase-3 and caspase-9 expressions were determined. RPMI8226 cell viability was reduced 4.7%, 11.3%, 32.7%, 48.6% and 60.3% at 20–100 µg/ml of SeNPs respectively. Intracellular ROS level was increased in RPMI8226 cells 31.9%, 86%, 167% and 313.6% at 40–100 µg/ml of SeNPs respectively. ATP level was reduced in RPMI8226 cells 15.8%, 32.6%, 48.3% and 55.5% at 40–100 µg/ml of SeNPs respectively. Higher concentration of SeNPs showed nuclear coagulation, cell contraction, and more cell debris were noted with increased concentration of SeNPs, and dose-dependent relationship was observed. Apoptosis of RPMI8226 cells increased with increased concentration of SeNPs. SeNPs also increased mRNA and protein expression of caspase-3 and caspase-9 in RPMI8226 cells. Taking all these data together, it is concluded that the SeNPs could effectively induce apoptosis, and cell death of multiple myeloma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Rossi, C. Botta, M. Arbitrio, R. D. Grembiale, P. Tagliaferri, and P. Tassone (2018). Oncotarget 9, 20119.

    Article  Google Scholar 

  2. L. Y. Cruz, D. Wang, and J. Liu (2019). J. Photochem. Photobiol. B 191, 123.

    Article  CAS  Google Scholar 

  3. S. T. Lwin, C. M. Edwards, and R. Silbermann (2016). Bonekey Rep. 5, 772.

    Article  CAS  Google Scholar 

  4. D. Kazandjian (2016). Semin. Oncol. 43, 676.

    Article  Google Scholar 

  5. N. A. Duggett and S. J. L. Flatters (2017). Br. J. Pharmacol. 174, 4812.

    Article  CAS  Google Scholar 

  6. H. Liu, R. Xu, and H. Huang (2016). Exp. Ther. Med. 12, 3041.

    Article  CAS  Google Scholar 

  7. D. M. Rozewski, S. E. Herman, and W. H. Towns (2012). AAPS J. 14, 872.

    Article  CAS  Google Scholar 

  8. P. Sonneveld (2017). Hematol. Am. Soc. Hematol. Educ. Prog. 2017, 508.

    Article  Google Scholar 

  9. R. Raliya, T. Singh Chadha, K. Haddad, and P. Biswas (2016). Curr. Pharm. Des. 22, 2481.

    Article  CAS  Google Scholar 

  10. H. Bahadar, F. Maqbool, K. Niaz, and M. Abdollahi (2016). Iran Biomed. J. 20, 1.

    PubMed  PubMed Central  Google Scholar 

  11. A. Khurana, S. Tekula, M. A. Saifi, P. Venkatesh, and C. Godugu (2019). Biomed. Pharmacother. 111, 802.

    Article  CAS  Google Scholar 

  12. S. Skalickova, V. Milosavljevic, K. Cihalova, P. Horky, L. Richtera, and V. Adam (2017). Nutrition 33, 83.

    Article  CAS  Google Scholar 

  13. H. Steinbrenner, and H. Sies (2009). Acta (BBA)-Gen. 1790, 1478.

  14. A. V. Tugarova, P. V. Mamchenkova, and Y. A. Dyatlova (2018). Spectrochim. Acta A 192, 458.

    Article  CAS  Google Scholar 

  15. H. C. Winkler, M. Suter, and H. Naegeli (2016). J. Nanobiotechnol. 14, 44.

    Article  Google Scholar 

  16. P. Sonkusre and S. S. Cameotra (2017). J. Nanobiotechnol. 15, 43.

    Article  Google Scholar 

  17. G. Huang, Z. Liu, L. He, K. H. Luk, S. T. Cheung, and K. H. Wong (2018). Biomater. Sci. 2018, 2508.

    Article  Google Scholar 

  18. P. Muthuraman, G. Enkhtaivan, M. Bhupendra, M. Chandrasekaran, N. Rafi, and D. H. Kim (2016). Saudi J. Biol. Sci. 23, 503.

    Article  Google Scholar 

  19. G. Zhao, R. Dong, J. Teng, L. Yang, T. Liu, X. Wu, Y. He, Z. Wang, H. Pu, and Y. Wang (2020). ACS Omega 5, 11710.

    Article  CAS  Google Scholar 

  20. M. Marvibaigi, N. Amini, and E. Supriyanto (2016). PLoS ONE 11, e0158942.

    Article  Google Scholar 

  21. Z. Li, D. Guo, X. Yin, S. Ding, M. Shen, R. Zhang, Y. Wang, and R. Xu (2020). Biomed. Pharmacother. 122, 109712.

    Article  CAS  Google Scholar 

  22. J. Bai and Z. Meng (2010). Environ. Mol. Mutagen. 51, 112.

    CAS  PubMed  Google Scholar 

  23. G. Purushotham, Y. Padma, and Y. Nabiha (2016). 3 Biotech. 6, 212.

    Article  Google Scholar 

  24. M. Esghaei, H. Ghaffari, B. Rahimi Esboei, Z. Ebrahimi Tapeh, F. Bokharaei Salim, and M. Motevalian (2018). Asian Pac. J. Cancer Prev. 19, 1697.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. K. Scott, P. J. Hayden, A. Will, K. Wheatley, and I. Coyne (2016). Cochrane Database Syst. Rev. 4, CD010816.

    PubMed  Google Scholar 

  26. J. Abdi, G. Chen, and H. Chang (2013). Oncotarget 4, 2186–2207.

    Article  Google Scholar 

  27. H. Li, D. Liu, S. Li, and C. Xue (2019). Int. J. Biol. Macromol. 129, 818.

    Article  CAS  Google Scholar 

  28. J. Tian, X. Wei, W. Zhang, and A. Xu (2020). Front. Bioeng. Biotechnol. 8, 598997.

    Article  Google Scholar 

  29. L. Wang, C. Li, Q. Huang, and X. Fu (2019). Food Funct. 10, 539.

    Article  CAS  Google Scholar 

  30. Z. Li, B. Ding, X. Zhou, and G. L. Wang (2017). PLoS Pathog. 13, e1006157.

    Article  Google Scholar 

  31. V. Gangadevi, S. Thatikonda, V. Pooladanda, G. Devabattula, and C. Godugu (2021). J. Nanobiotechnol. 19, 101.

    Article  CAS  Google Scholar 

  32. G. Liao, J. Tang, and D. Wang (2020). World J. Surg. Oncol. 18, 81.

    Article  Google Scholar 

  33. V. Sharma, S. K. Singh, D. Anderson, D. J. Tobin, and A. Dhawan (2011). J. Nanosci. Nanotechnol. 11, 3782.

    Article  CAS  Google Scholar 

  34. R. K. Shukla, V. Sharma, A. K. Pandey, S. Singh, S. Sultana, and A. Dhawan (2010). Toxicol. In Vitro 25, 231.

    Article  Google Scholar 

  35. D. Iannazzo, R. Ettari, S. Giofrè, A. H. Eid, and A. Bitto (2020). Cancers (Basel) 12, 3144.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

LL conceived and designed research. YG and WZ performed experiments and performed statistical analysis. YZ wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yan Zheng.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Gao, Y., Zhang, W. et al. Antitumor Potential of Selenium Nanoparticles (SeNPs) Against Multiple Myeloma Model in RPMI8226 Cells. J Clust Sci 33, 2771–2780 (2022). https://doi.org/10.1007/s10876-021-02191-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02191-5

Keywords

Navigation