Skip to main content
Log in

Enhanced Antibacterial Potential of Naringin Loaded β Cyclodextrin Nanoparticles

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

β-cyclodextrin (β-CD) is biocompatible and biodegradable polymer having inherent hydrophobic cavities, thus is widely used as a drug nanocarrier for less water soluble drugs. Naringin is a pharmacologically active important compound however, its therapeutic efficacy is limited due to its unique physicochemical properties including lower aqueous solubility. This study reports improvement in bactericidal potentials of naringin through construction of its nano-formulation using biocompatible β-CD. Naringin loaded β-CD NPs were prepared via solvent evaporation method and characterized using various techniques such as FTIR, UV–visible spectroscopy, AFM, DSC and TGA analysis. Tetrazolium Microplate and AFM assays were used for investigating the bactericidal potential of naringin loaded β-CD NPs. Monodispersed NPs with spherical morphology of 70.00 ± 15.06 nm mean diameter were obtained that possessed net negative surface charge of − 18.20 ± 3.24 mV and were highly stable and did not change the chemical nature of the drug in various media. Antibacterial activity of naringin in β-CD NPs significantly enhanced that was authenticated by AFM, showing prominent destructive changes in the bacterial cell’s morphology through destabilization of outer membrane of bacterial cells by drug loaded NPs. Results of this study suggest that the β-CD NPs of naringin could be used as a successful formulation for developing more efficacious form of the drug against various bacterial infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. J. Peterson, G. R. Beecher, S. A. Bhagwat, J. T. Dwyer, S. E. Gebhardt, D. B. Haytowitz, and J. M. Holden (2006). J. Food Compos. Anal. 19, S74–S80.

    Article  CAS  Google Scholar 

  2. J. A. Manthey, N. Guthrie, and K. J. Grohmann (2001). Curr. Med. Chem. 8, (2), 135–153.

    Article  CAS  Google Scholar 

  3. R. A. Dixon and C. L. Steele (1999). Trends Plant Sci. 4, (10), 394–400.

    Article  CAS  Google Scholar 

  4. M. Yu, D. You, J. Zhuang, S. Lin, L. Dong, S. Weng, B. Zhang, K. Cheng, W. Weng, and H. Wang (2017). ACS Appl. Mater. Interfaces 9, (23), 19698–19705.

    Article  CAS  Google Scholar 

  5. F. Sansone, R. Aquino, P. Del Gaudio, P. Colombo, and P. J. E. J. O. P. Russo (2009). Eur. J. Pharm. Biopharm. 72, (1), 206–213.

    Article  CAS  Google Scholar 

  6. K. Rao, M. Imran, T. Jabri, I. Ali, S. Perveen, S. Ahmed, and M. R. Shah (2017). Carbohydr. Polym. 174, 243–252.

    Article  CAS  Google Scholar 

  7. J. Panyam and V. J. Labhasetwar (2012). Adv. Drug Deliv. Rev. 64, 61–71.

    Article  Google Scholar 

  8. H. S. Yoo, J. E. Oh, K. H. Lee, and T. G. Park (1999). Pharm. Res. 16, (7), 1114–1118.

    Article  CAS  Google Scholar 

  9. Z. Liu, Y. Jiao, Y. Wang, C. Zhou, and Z. J. Zhang (2008). Adv. Drug Deliv. Rev. 60, (15), 1650–1662.

    Article  CAS  Google Scholar 

  10. R. Mejia-Ariza, L. Graña-Suárez, W. Verboom, and J. Huskens (2017). J. Mater. Chem. B 5, (1), 36–52.

    Article  CAS  Google Scholar 

  11. E. Bilensoy Cyclodextrins in Pharmaceutics, Cosmetics, and Biomedicine: Current and Future Industrial Applications (Wiley, New York, 2011).

    Book  Google Scholar 

  12. Y. Çirpanli, E. Bilensoy, A. L. Doğan, and S. Çaliş (2009). Eur. J. Pharm. Biopharm. 73, (1), 82–89.

    Article  Google Scholar 

  13. P. Karande and S. Mitragotri (2009). Biochim Biophys Acta (BBA) Biomembr 1788, (11), 2362–2373.

    Article  CAS  Google Scholar 

  14. T. Loftsson and D. Duchene (2007). Int. J. Pharm. 329, (1–2), 1–11.

    Article  CAS  Google Scholar 

  15. Y. Yang, J. Gao, X. Ma, and G. Huang (2017). Asian J. Pharm. Sci. 12, (2), 187–192.

    Article  Google Scholar 

  16. H. Rachmawati, C. A. Edityaningrum, and R. Mauludin (2013). AAPS PharmSciTech 14, (4), 1303–1312.

    Article  CAS  Google Scholar 

  17. T. Van Hees, G. Piel, S. H. de Hassonville, B. Evrard, and L. J. Delattre (2002). Eur. J. Pharm. Sci. 15, (4), 347–353.

    Article  Google Scholar 

  18. K. A. Owoseni-Fagbenro, S. Saifullah, M. Imran, S. Perveen, K. Rao, T. M. Fasina, I. A. Olasupo, L. A. Adams, I. Ali, and M. R. Shah (2019). J. Drug Deliv. Sci. Technol. 50, 347–354.

    Article  CAS  Google Scholar 

  19. S. M. Habib, R. Maharjan, T. Kanwal, I. I. Althagafi, S. Saifullah, S. Ullah, S. U. Simjee, and M. R. Shah (2020). Int. J. Pharm. 590, 119897.

    Article  CAS  Google Scholar 

  20. S. P. Piaru, R. Mahmud, and S. Perumal (2012). Int J Pharmacol. 8, (6), 572–576.

    Article  Google Scholar 

  21. S. D. Sarker, L. Nahar, and Y. Kumarasamy (2007). Methods 42, (4), 321–324.

    Article  CAS  Google Scholar 

  22. I. Ghaffar, M. Imran, S. Perveen, T. Kanwal, S. Saifullah, M. F. Bertino, C. J. Ehrhardt, V. K. Yadavalli, and M. R. Shah (2019). Mater. Sci. Eng. C 105, 110111.

    Article  CAS  Google Scholar 

  23. M. Imran, M. R. Shah, F. Ullah, S. Ullah, A. M. Elhissi, W. Nawaz, F. Ahmad, A. Sadiq, and I. Ali (2016). Int. J. Pharm. 505, (1–2), 122–132.

    Article  CAS  Google Scholar 

  24. A. A. Kassem, A. M. Mohsen, R. S. Ahmed, and T. M. Essam (2016). J. Mol. Liq. 218, 219–232.

    Article  CAS  Google Scholar 

  25. J. Jingou, H. Shilei, L. Weiqi, W. Danjun, W. Tengfei, and X. Yi (2011). Colloids Surf. B: Biointerfaces 83, (1), 103–107.

    Article  Google Scholar 

  26. A. Calderini and F. Pessine (2008). J. Incl. Phenom. Macrocycl. Chem. 60, (3–4), 369–377.

    Article  CAS  Google Scholar 

  27. Z. Hadian, M. Maleki, K. Abdi, F. Atyabi, A. Mohammadi, and R. J. Khaksar (2018). Iran. J. Pharm. Res. 17, (1), 39.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. K. I. Matshetshe, S. Parani, S. M. Manki, and O. S. Oluwafemi (2018). Int. J. Biol. Macromol. 118, 676–682.

    Article  CAS  Google Scholar 

  29. G. Athanassiou, S. Michaleas, E. Lada-Chitiroglou, T. Tsitsa, and E. Antoniadou-Vyza (2003). J. Pharm. Pharmacol. 55, (3), 291–300.

    Article  CAS  Google Scholar 

  30. G. Celiz, M. Daz, and M. C. J. J. O. A. M. Audisio (2011). J. Appl. Microbiol. 111, (3), 731–738.

    Article  CAS  Google Scholar 

  31. N. Sahu, D. Soni, B. Chandrashekhar, D. Satpute, S. Saravanadevi, B. Sarangi, and R. A. Pandey (2016). Int. Nano Lett. 6, (3), 173–181.

    Article  Google Scholar 

Download references

Acknowledgements

All the authors acknowledge International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Pakistan, for providing lab facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Raza Shah.

Ethics declarations

Conflicts of interest

All authors declare they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, K., Ali, I., Ullah, S. et al. Enhanced Antibacterial Potential of Naringin Loaded β Cyclodextrin Nanoparticles. J Clust Sci 33, 339–348 (2022). https://doi.org/10.1007/s10876-020-01972-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01972-8

Keywords

Navigation