Skip to main content
Log in

Homogeneous Catalysis by Organometallic Polynuclear Clusters

  • Review Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Homogeneous polynuclear metal clusters constitute a broad class of coordination compounds with important applications in catalysis. The current interest of synthetic chemistry in this field demands the exploration of new strategies to develop catalytic methods that work under mild conditions and maximize atom utilization. This review covers the application of polynuclear clusters of nuclearity ≥ 3 in homogeneous catalytic processes, with focus on providing an array of examples of various reaction types within cluster catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Scheme 3
Fig. 2
Fig. 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Fig. 4
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Fig. 5
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Scheme 43

Similar content being viewed by others

References

  1. D. F. Shriver and M. J. Sailor (1988). Acc. Chem. Res.21, 374–379.

    CAS  Google Scholar 

  2. R. Giordano, E. Sappa, and S. A. R. Knox (1996). J. Clust. Sci.7, 179–190.

    CAS  Google Scholar 

  3. E. Sappa, A. Tiripicchio, and P. Braunstein (1983). Chem. Rev.83, 203–239.

    CAS  Google Scholar 

  4. J. B. Keister and J. R. Shapley (1975). J. Organomet. Chem.85, C29–C31.

    CAS  Google Scholar 

  5. E. L. Muetterties and J. Stein (1979). Chem. Rev.79, 479–490.

    CAS  Google Scholar 

  6. H. Nagashima, T. Fukahori, K. Aoki, and K. Itoh (1993). J. Am. Chem. Soc.115, 10430–10431.

    CAS  Google Scholar 

  7. H. Nagashima, A. Suzuki, M. Nobata, and K. Itoh (1996). J. Am. Chem. Soc.118, 687–688.

    CAS  Google Scholar 

  8. C. S. Yi, T. N. Zeczycki, and S. V. Lindeman (2008). Organometallics27, 2030–2035.

    CAS  Google Scholar 

  9. P. Buchwalter, J. Rosé, and P. Braunstein (2015). Chem. Rev.115, 28–126.

    CAS  PubMed  Google Scholar 

  10. I. G. Powers and C. Uyeda (2017). ACS Catal.7, 936–958.

    CAS  Google Scholar 

  11. F. A. Cotton (1964). Inorg. Chem.3, 1217–1220.

    CAS  Google Scholar 

  12. F. A. Cotton (1966). Q. Rev. Chem. Soc.20, 389.

    CAS  Google Scholar 

  13. E. R. Rosenberg, M. Laine. in Catalysis by di- and polynuclear metal cluster complexes. R. D. Adams and F. A. Cotton (eds.), (Wiley-VCH, Weinheim, 1998), p. 4.

  14. R. D. Adams, B. Captain, and L. Zhu (2004). J. Am. Chem. Soc.126, 3042–3043.

    CAS  PubMed  Google Scholar 

  15. S. Sculfort and P. Braunstein (2011). Chem. Soc. Rev.40, 2741–2760.

    CAS  PubMed  Google Scholar 

  16. T. G. Gray (2003). Coord. Chem. Rev.243, 213–235.

    CAS  Google Scholar 

  17. R. A. Walton (2004). J. Clust. Sci.15, 559–588.

    CAS  Google Scholar 

  18. E. L. Muetterties and M. J. Krause (1983). Angew. Chem. Int. Ed.22, 135–148.

    Google Scholar 

  19. J. L. Kuiper, P. A. Shapley, and C. M. Rayner (2004). Organometallics23, 3814–3818.

    CAS  Google Scholar 

  20. R. M. Laine (1982). J. Mol. Catal.14, 137–169.

    CAS  Google Scholar 

  21. D. R. Anton and R. H. Crabtree (1983). Organometallics2, 855–859.

    CAS  Google Scholar 

  22. C. M. Hagen, L. Vieille-Petit, G. Laurenczy, G. Süss-Fink, and R. G. Finke (2005). Organometallics24, 1819–1831.

    CAS  Google Scholar 

  23. P. M. Lausarot, G. A. Vaglio, and M. Valle (1982). J. Organomet. Chem.240, 441–445.

    CAS  Google Scholar 

  24. P. M. Lausarot, G. A. Vaglio, and M. Valle (1984). J. Organomet. Chem.275, 233–237.

    CAS  Google Scholar 

  25. F. C. C. Moura, R. M. Lago, E. N. dos Santos, and M. Helena Araujo (2002). Catal. Commun.3, 541–545.

    CAS  Google Scholar 

  26. T. Joh, K. Doyama, K. Onitsuka, T. Shiohara, and S. Takahashi (1991). Organometallics10, 2493–2498.

    CAS  Google Scholar 

  27. L. Alvila, T. A. Pakkanen, T. T. Pakkanen, and O. Krause (1992). J. Mol. Catal.73, 325–334.

    CAS  Google Scholar 

  28. N. Chatani, A. Kamitani, M. Oshita, Y. Fukumoto, and S. Murai (2001). J. Am. Chem. Soc.123, 12686–12687.

    CAS  PubMed  Google Scholar 

  29. S. Inoue, K. Yokota, H. Tatamidani, Y. Fukumoto, and N. Chatani (2006). Org. Lett.8, 2519–2522.

    CAS  PubMed  Google Scholar 

  30. K. M. Driller, H. Klein, R. Jackstell, and M. Beller (2009). Angew. Chem. Int. Ed.48, 6041–6044.

    CAS  Google Scholar 

  31. T. Morimoto, N. Chatani, Y. Fukumoto, and S. Murai (1997). J. Org. Chem.62, 3762–3765.

    CAS  Google Scholar 

  32. T. Kondo, N. Suzuki, T. Okada, and T. Mitsudo (1997). J. Am. Chem. Soc.119, 6187–6188.

    CAS  Google Scholar 

  33. T. Kondo, A. Nakamura, T. Okada, N. Suzuki, K. Wada, and T. Mitsudo (2000). J. Am. Chem. Soc.122, 6319–6320.

    CAS  Google Scholar 

  34. T. Kondo, Y. Kaneko, Y. Taguchi, A. Nakamura, T. Okada, M. Shiotsuki, Y. Ura, K. Wada, and T. Mitsudo (2002). J. Am. Chem. Soc.124, 6824–6825.

    CAS  PubMed  Google Scholar 

  35. H. Yamazaki and P. Hong (1983). J. Mol. Catal.21, 133–150.

    CAS  Google Scholar 

  36. N. Chatani, Y. Ie, F. Kakiuchi, and S. Murai (1997). J. Org. Chem.62, 2604–2610.

    CAS  PubMed  Google Scholar 

  37. Y. Ishii, N. Chatani, F. Kakiuchi, and S. Murai (1997). Organometallics16, 3615–3622.

    CAS  Google Scholar 

  38. N. Chatani, T. Asaumi, S. Yorimitsu, T. Ikeda, F. Kakiuchi, and S. Murai (2001). J. Am. Chem. Soc.123, 10935–10941.

    CAS  PubMed  Google Scholar 

  39. R. Koelliker and G. Bor (1991). J. Organomet. Chem.417, 439–451.

    CAS  Google Scholar 

  40. F. Ragaini, A. Ghitti, and S. Cenini (1999). Organometallics18, 4925–4933.

    CAS  Google Scholar 

  41. S. H. Han, G. L. Geoffroy, B. D. Dombek, and A. L. Rheingold (1988). Inorg. Chem.27, 4355–4361.

    CAS  Google Scholar 

  42. R. A. Sanchez-Delgado, J. S. Bradley, and G. Wilkinson (1976). J. Chem. Soc. Dalton. Trans.. https://doi.org/10.1039/DT9760000399.

    Article  Google Scholar 

  43. D. Blazina, S. B. Duckett, P. J. Dyson, and J. A. B. Lohman (2001). Angew. Chem. Int. Ed.40, 3874–3877.

    CAS  Google Scholar 

  44. D. Blazina, S. B. Duckett, P. J. Dyson, and J. A. B. Lohman (2003). Chem. Eur. J.9, 1045–1061.

    PubMed  Google Scholar 

  45. B. Y. Park, T. P. Montgomery, V. J. Garza, and M. J. Krische (2013). J. Am. Chem. Soc.135, 16320–16323.

    CAS  PubMed  Google Scholar 

  46. N. Hasegawa, V. Charra, S. Inoue, Y. Fukumoto, and N. Chatani (2011). J. Am. Chem. Soc.133, 8070–8073.

    CAS  PubMed  Google Scholar 

  47. K. Shibata, N. Hasegawa, Y. Fukumoto, and N. Chatani (2012). ChemCatChem4, 1733–1736.

    CAS  Google Scholar 

  48. N. Hasegawa, K. Shibata, V. Charra, S. Inoue, Y. Fukumoto, and N. Chatani (2013). Tetrahedron69, 4466–4472.

    CAS  Google Scholar 

  49. I. Fleischer, L. Wu, I. Profir, R. Jackstell, R. Franke, and M. Beller (2013). Chem. Eur. J.19, 10589–10594.

    CAS  PubMed  Google Scholar 

  50. I. Fleischer, K. M. Dyballa, R. Jennerjahn, R. Jackstell, R. Franke, A. Spannenberg, and M. Beller (2013). Angew. Chem. Int. Ed.52, 2949–2953.

    CAS  Google Scholar 

  51. J. Liu, C. Kubis, R. Franke, R. Jackstell, and M. Beller (2016). ACS Catal.6, 907–912.

    CAS  Google Scholar 

  52. C. Rameshkumar and M. Periasamy (2000). Tetrahedron Lett.41, 2719–2722.

    CAS  Google Scholar 

  53. M. Periasamy, A. Mukkanti, and D. S. Raj (2004). Organometallics23, 619–621.

    CAS  Google Scholar 

  54. M. Periasamy, A. Mukkanti, and D. S. Raj (2004). Organometallics23, 6323–6326.

    CAS  Google Scholar 

  55. P. Chini and S. Martinengo (1969). Inorg. Chim. Acta3, 315–318.

    CAS  Google Scholar 

  56. S. Martinengo, A. Fumagalli, P. Chini, V. G. Albano, and G. Clani (1976). J. Organomet. Chem.116, 333–342.

    CAS  Google Scholar 

  57. S. Martinengo, A. Fumagalli, and P. Chini (1985). J. Organomet. Chem.284, 275–279.

    CAS  Google Scholar 

  58. I. Matsuda, Y. Fukuta, T. Tsuchihashi, H. Nagashima, and K. Itoh (1997). Organometallics16, 4327–4345.

    CAS  Google Scholar 

  59. Longoni G, Campanella S, Ceriotti A, Chini P, Albano VG, Braga D (1980). J. Chem. Soc. Dalton Trans. pp. 1816–1819.

  60. T. Kondo, M. Akazome, Y. Tsuji, and Y. Watanabe (1990). J. Org. Chem.55, 1286–1291.

    CAS  Google Scholar 

  61. E. J. Moore, W. R. Pretzer, T. J. O’Connell, J. Harris, L. LaBounty, L. Chou, and S. S. Grimmer (1992). J. Am. Chem. Soc.114, 5888–5890.

    CAS  Google Scholar 

  62. N. Chatani, T. Fukuyama, F. Kakiuchi, and S. Murai (1996). J. Am. Chem. Soc.118, 493–494.

    CAS  Google Scholar 

  63. R. Agarwala, K. A. Azam, R. Dilshad, S. E. Kabir, R. Miah, M. Shahiduzzaman, K. I. Hardcastle, E. Rosenberg, M. B. Hursthouse, and K. M. Abdul Malik (1995). J. Organomet. Chem.492, 135–144.

    CAS  Google Scholar 

  64. M. I. Bruce, B. L. Goodall, F. Gordon, and A. Stone (1973). J. Organomet. Chem.60, 343–349.

    CAS  Google Scholar 

  65. N. Chatani, T. Morimoto, Y. Fukumoto, and S. Murai (1998). J. Am. Chem. Soc.120, 5335–5336.

    CAS  Google Scholar 

  66. N. Chatani, Y. Ishii, Y. Ie, F. Kakiuchi, and S. Murai (1998). J. Org. Chem.63, 5129–5136.

    CAS  Google Scholar 

  67. K. Burgess, H. D. Holden, B. F. G. Johnson, J. Lewis, M. B. Hursthouse, N. P. C. Walker, A. J. Deeming, P. J. Manning, and R. Peters (1985). J. Chem. Soc. Dalton. Trans.. https://doi.org/10.1039/DT9850000085.

    Article  Google Scholar 

  68. N. Chatani, T. Fukuyama, H. Tatamidani, F. Kakiuchi, and S. Murai (2000). J. Org. Chem.65, 4039–4047.

    CAS  PubMed  Google Scholar 

  69. T. Fukuyama, N. Chatani, J. Tatsumi, F. Kakiuchi, and S. Murai (1998). J. Am. Chem. Soc.120, 11522–11523.

    CAS  Google Scholar 

  70. S. Inoue, H. Shiota, Y. Fukumoto, and N. Chatani (2009). J. Am. Chem. Soc.131, 6898–6899.

    CAS  PubMed  Google Scholar 

  71. F. Kakiuchi, T. Sato, T. Tsujimoto, M. Yamauchi, N. Chatani, and S. Murai (1998). Chem. Lett.27, 1053–1054.

    Google Scholar 

  72. J. A. Cabeza, J. M. Fernandez-Colinas, A. Llamazares, V. Riera, S. Garcia-Granda, and J. F. Van der Maelen (1994). Organometallics13, 4352–4359.

    CAS  Google Scholar 

  73. J. A. Cabeza, I. del Rio, J. M. Fernández-Colinas, A. Llamazares, and V. Riera (1995). J. Organomet. Chem.494, 169–177.

    CAS  Google Scholar 

  74. J. A. Cabeza, I. del Río, J. M. Fernández-Colinas, and V. Riera (1996). Organometallics15, 449–451.

    CAS  Google Scholar 

  75. M. Castiglioni, R. Giordano, and E. Sappa (1991). J. Organomet. Chem.407, 377–389.

    CAS  Google Scholar 

  76. A. G. Algarra, E. Guillamón, J. Andrés, M. J. Fernández-Trujillo, E. Pedrajas, J. Á. Pino-Chamorro, R. Llusar, and M. G. Basallote (2018). ACS Catal.8, 7346–7350.

    CAS  Google Scholar 

  77. C. Bergounhou, P. Fompeyrine, G. Commenges, and J. J. Bonnet (1988). J. Mol. Catal.48, 285–312.

    CAS  Google Scholar 

  78. H.-J. Haupt, R. Wittbecker, and U. Flörke (1996). J. Organomet. Chem.518, 213–219.

    CAS  Google Scholar 

  79. T. N. Gieshoff, U. Chakraborty, M. Villa, and A. Jacobi von Wangelin (2017). Angew Chem. Int. Ed.56, 3585–3589.

    CAS  Google Scholar 

  80. U. Chakraborty, E. Reyes-Rodriguez, S. Demeshko, F. Meyer, and A. Jacobi von Wangelin (2018). Angew. Chem. Int. Ed.57, 4970–4975.

    CAS  Google Scholar 

  81. U. Matteoli, V. Beghetto, and A. Scrivanti (1996). J. Mol. Catal. A. Chem.109, 45–50.

    CAS  Google Scholar 

  82. P. Homanen, R. Persson, M. Haukka, T. A. Pakkanen, and E. Nordlander (2000). Organometallics19, 5568–5574.

    CAS  Google Scholar 

  83. V. Moberg, P. Homanen, S. Selva, R. Persson, M. Haukka, T. A. Pakkanen, M. Monari, and E. Nordlander (2006). Dalton Trans.. https://doi.org/10.1039/B515273A.

    Article  PubMed  Google Scholar 

  84. V. Moberg, M. Haukka, I. O. Koshevoy, R. Ortiz, and E. Nordlander (2007). Organometallics26, 4090–4093.

    CAS  Google Scholar 

  85. V. Moberg, R. Duquesne, S. Contaldi, O. Röhrs, J. Nachtigall, L. Damoense, A. T. Hutton, M. Green, M. Monari, D. Santelia, M. Haukka, and E. Nordlander (2012). Chem. Eur. J.18, 12458–12478.

    CAS  PubMed  Google Scholar 

  86. A. F. Abdel-Magied, M. S. Patil, A. K. Singh, M. Haukka, M. Monari, and E. Nordlander (2015). J. Clust. Sci.26, 1231–1252.

    CAS  Google Scholar 

  87. A. F. Abdel-Magied, A. K. Singh, M. Haukka, M. G. Richmond, and E. Nordlander (2014). Chem. Commun.50, 7705–7708.

    CAS  Google Scholar 

  88. A. F. Abdel-Magied, M. H. Majeed, M. F. Abelairas-Edesa, A. Ficks, R. M. Ashour, A. Rahaman, W. Clegg, M. Haukka, L. J. Higham, and E. Nordlander (2017). J. Organomet. Chem.849–850, 71–79.

    Google Scholar 

  89. H. Zhang, C.-B. Yang, Y.-Y. Li, Z.-R. Donga, J.-X. Gao, H. Nakamura, K. Murata, and T. Ikariya (2003). Chem. Commun.. https://doi.org/10.1039/B209974H.

    Article  Google Scholar 

  90. J. A. Cabeza, I. da Silva, I. del Río, R. A. Gossage, D. Miguel, and M. Suárez (2006). Dalton Trans.. https://doi.org/10.1039/B517758H.

    Article  PubMed  Google Scholar 

  91. I. Sorribes, G. Wienhöfer, C. Vicent, K. Junge, R. Llusar, and M. Beller (2012). Angew. Chem. Int. Ed.51, 7794–7798.

    CAS  Google Scholar 

  92. E. Pedrajas, I. Sorribes, K. Junge, M. Beller, and R. Llusar (2015). ChemCatChem7, 2675–2681.

    CAS  Google Scholar 

  93. E. Pedrajas, I. Sorribes, A. L. Gushchin, Y. A. Laricheva, K. Junge, M. Beller, and R. Llusar (2017). ChemCatChem9, 1128–1134.

    CAS  Google Scholar 

  94. E. Pedrajas, I. Sorribes, K. Junge, M. Beller, and R. Llusar (2017). Green Chem.19, 3764–3768.

    CAS  Google Scholar 

  95. Y. Nakajima and H. Suzuki (2005). Organometallics24, 1860–1866.

    CAS  Google Scholar 

  96. T. Takao, S. Horikoshi, T. Kawashima, S. Asano, Y. Takahashi, A. Sawano, and H. Suzuki (2018). Organometallics37, 1598–1614.

    CAS  Google Scholar 

  97. C. Federsel, A. Boddien, R. Jackstell, R. Jennerjahn, P. J. Dyson, R. Scopelliti, G. Laurenczy, and M. Beller (2010). Angew. Chem. Int. Ed.49, 9777–9780.

    CAS  Google Scholar 

  98. C. Federsel, C. Ziebart, R. Jackstell, W. Baumann, and M. Beller (2012). Chem. Eur. J.18, 72–75.

    CAS  PubMed  Google Scholar 

  99. S. Wesselbaum, T. vom Stein, J. Klankermayer, and W. Leitner (2012). Angew. Chem. Int. Ed.51, 7499–7502.

    CAS  Google Scholar 

  100. J. F. Hull, Y. Himeda, W.-H. Wang, B. Hashiguchi, R. Periana, D. J. Szalda, J. T. Muckerman, and E. Fujita (2012). Nat. Chem.4, 383.

    CAS  PubMed  Google Scholar 

  101. S. Shitaya, K. Nomura, and A. Inagaki (2019). Chem. Commun.55, 5087–5090.

    CAS  Google Scholar 

  102. I. Y. Guzman-Jimenez, J. W. Van Hal, and K. H. Whitmire (2003). Organometallics22, 1914–1922.

    CAS  Google Scholar 

  103. R. E. Bachman and K. H. Whitmire (1994). Inorg. Chem.33, 2527–2533.

    CAS  Google Scholar 

  104. N. Suzuki, T. Kondo, and T. Mitsudo (1998). Organometallics17, 766–769.

    CAS  Google Scholar 

  105. G. Süss-Fink and G. Herrmann (1985). J. Chem. Soc. Chem. Commun.. https://doi.org/10.1039/C39850000735.

    Article  Google Scholar 

  106. G. Süss-Fink and G. F. Schmidt (1987). J. Mol. Catal.42, 361–366.

    Google Scholar 

  107. E. L. Diz, A. Neels, H. Stoeckli-Evans, and G. Süss-Fink (2001). Polyhedron20, 2771–2780.

    CAS  Google Scholar 

  108. R. C. Ryan, C. U. Pittman, and J. P. O’Connor (1977). J. Am. Chem. Soc.99, 1986–1988.

    CAS  Google Scholar 

  109. C. U. Pitmann and R. C. Ryan (1978). Chemtech8, 170–175.

    Google Scholar 

  110. C. U. Pittman, G. M. Wilemon, W. D. Wilson, and R. C. Ryan (1980). Angew. Chem. Int. Ed.19, 478–479.

    Google Scholar 

  111. P. Nombel, N. Lugan, F. Mulla, and G. Lavigne (1994). Organometallics13, 4673–4675.

    CAS  Google Scholar 

  112. P. Nombel, N. Lugan, B. Donnadieu, and G. Lavigne (1999). Organometallics18, 187–196.

    CAS  Google Scholar 

  113. D.-S. Kim, W.-J. Park, C.-H. Lee, and C.-H. Jun (2014). J. Org. Chem.79, 12191–12196.

    CAS  PubMed  Google Scholar 

  114. S. Ko, Y. Na, and S. Chang (2002). J. Am. Chem. Soc.124, 750–751.

    CAS  PubMed  Google Scholar 

  115. Y. Na, S. Ko, L. K. Hwang, and S. Chang (2003). Tetrahedron Lett.44, 4475–4478.

    CAS  Google Scholar 

  116. S. Ko, C. Lee, M.-G. Choi, Y. Na, and S. Chang (2003). J. Org. Chem.68, 1607–1610.

    CAS  PubMed  Google Scholar 

  117. S. Ko, H. Han, and S. Chang (2003). Org. Lett.5, 2687–2690.

    CAS  PubMed  Google Scholar 

  118. E. J. Park, J. M. Lee, H. Han, and S. Chang (2006). Org. Lett.8, 4355–4358.

    CAS  PubMed  Google Scholar 

  119. T. Kondo, T. Okada, and T. Mitsudo (1999). Organometallics18, 4123–4127.

    CAS  Google Scholar 

  120. E. Yoneda, T. Kaneko, S.-W. Zhang, K. Onitsuka, and S. Takahashi (2000). Org. Lett.2, 441–443.

    CAS  PubMed  Google Scholar 

  121. E. Yoneda, S.-W. Zhang, D.-Y. Zhou, K. Onitsuka, and S. Takahashi (2003). J. Org. Chem.68, 8571–8576.

    CAS  PubMed  Google Scholar 

  122. M. Tsubuki, K. Takahashi, and T. Honda (2009). J. Org. Chem.74, 1422–1425.

    CAS  PubMed  Google Scholar 

  123. H. Nagashima, A. Suzuki, T. Iura, K. Ryu, and K. Matsubara (2000). Organometallics19, 3579–3590.

    CAS  Google Scholar 

  124. H. Sasakuma, Y. Motoyama, and H. Nagashima (2007). Chem. Commun.. https://doi.org/10.1039/B711743D.

    Article  Google Scholar 

  125. S. Yumino, T. Hashimoto, A. Tahara, and H. Nagashima (2014). Chem. Lett.43, 1829–1831.

    Google Scholar 

  126. S. Hanada, A. Yuasa, H. Kuroiwa, Y. Motoyama, and H. Nagashima (2010). Eur. J. Org. Chem.2010, 1021–1025.

    Google Scholar 

  127. K. Miyamoto, Y. Motoyama, and H. Nagashima (2012). Chem. Lett.41, 229–231.

    CAS  Google Scholar 

  128. S. Hanada, Y. Motoyama, and H. Nagashima (2008). Eur. J. Org. Chem.2008, 4097–4100.

    Google Scholar 

  129. H. Nagashima, C. Itonaga, J. Yasuhara, Y. Motoyama, and K. Matsubara (2004). Organometallics23, 5779–5786.

    CAS  Google Scholar 

  130. N. Harada, T. Nishikata, and H. Nagashima (2012). Tetrahedron68, 3243–3252.

    CAS  Google Scholar 

  131. T. F. Beltrán, M. Feliz, R. Llusar, J. A. Mata, and V. S. Safont (2011). Organometallics30, 290–297.

    Google Scholar 

  132. C. Alfonso, T. F. Beltrán, M. Feliz, and R. Llusar (2015). J. Clust. Sci.26, 199–209.

    CAS  Google Scholar 

  133. C. S. Yi, T. N. Zeczycki, and I. A. Guzei (2006). Organometallics25, 1047–1051.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. C. S. Yi and D. W. Lee (2009). Organometallics28, 947–949.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. J. Kim, N. Pannilawithana, and C. S. Yi (2016). ACS Catal.6, 8395–8398.

    CAS  Google Scholar 

  136. T. Takao, T. Kawashima, H. Kanda, R. Okamura, and H. Suzuki (2012). Organometallics31, 4817–4831.

    CAS  Google Scholar 

  137. R. M. Haak, A. Decortes, E. C. Escudero-Adán, M. M. Belmonte, E. Martin, J. Benet-Buchholz, and A. W. Kleij (2011). Inorg. Chem.50, 7934–7936.

    CAS  PubMed  Google Scholar 

  138. N. Kielland, E. C. Escudero-Adán, M. Martínez Belmonte, and A. W. Kleij (2013). Dalton Trans.42, 1427–1436.

    CAS  PubMed  Google Scholar 

  139. B. Li, Y. Park, and S. Chang (2014). J. Am. Chem. Soc.136, 1125–1131.

    CAS  PubMed  Google Scholar 

  140. U. Chakraborty, S. Demeshko, F. Meyer, and A. Jacobi von Wangelin (2019). Angew. Chem. Int. Ed.58, 3466–3470.

    CAS  Google Scholar 

  141. C. U. Pittman, W. Honnick, M. Absi-Halabi, M. G. Richmond, R. Bender, and P. Braunstein (1985). J. Mol. Catal.32, 177–190.

    CAS  Google Scholar 

  142. M. Castiglioni, R. Giordano, E. Sappa, A. Tiripicchio, and M. T. Camellini (1986). J. Chem. Soc. Dalton Trans.. https://doi.org/10.1039/DT9860000023.

    Article  Google Scholar 

  143. M. Castiglioni, R. Giordano, and E. Sappa (1987). J. Organomet. Chem.319, 167–181.

    CAS  Google Scholar 

  144. M. Castiglioni, R. Giordano, and E. Sappa (1988). J. Organomet. Chem.342, 111–127.

    CAS  Google Scholar 

  145. R. D. Adams, Z. Li, P. Swepston, W. Wu, and J. Yamamoto (1992). J. Am. Chem. Soc.114, 10657–10658.

    CAS  Google Scholar 

  146. R. D. Adams, T. S. Barnard, Z. Li, W. Wu, and J. H. Yamamoto (1994). J. Am. Chem. Soc.116, 9103–9113.

    CAS  Google Scholar 

  147. R. D. Adams and T. S. Barnard (1998). Organometallics17, 2567–2573.

    CAS  Google Scholar 

  148. R. D. Adams and T. S. Barnard (1998). Organometallics17, 2885–2890.

    CAS  Google Scholar 

  149. E. S. Smirnova, J. M. Muñoz Molina, A. Johnson, N. A. G. Bandeira, C. Bo, and A. M. Echavarren (2016). Angew. Chem. Int. Ed.55, 7487–7491.

    CAS  Google Scholar 

  150. M. G. Richmond, M. Absi-Halbi, and C. U. Pittman (1984). J. Mol. Catal.22, 367–371.

    CAS  Google Scholar 

  151. F. Senocq, C. Randrianalimanana, A. Thorez, P. Kalck, R. Choukroun, and D. Gervais (1984). J. Chem. Soc. Chem. Commun.. https://doi.org/10.1039/C39840001376.

    Article  Google Scholar 

  152. D. Gervais, J. Jaud, P. Kalck, R. ChoUKroun, and F. Senocq (1986). Organometallics5, 67–71.

    Google Scholar 

  153. R. Choukroun, D. Gervais, and C. Rifaï (1989). Polyhedron8, 1760–1761.

    CAS  Google Scholar 

  154. R. Choukroun, F. Dahan, D. Gervais, and C. Rifai (1990). Organometallics9, 1982–1987.

    CAS  Google Scholar 

  155. M. A. Casado, J. J. Pérez-Torrente, M. A. Ciriano, L. A. Oro, A. Orejón, and C. Claver (1999). Organometallics18, 3035–3044.

    CAS  Google Scholar 

  156. M. A. Casado, M. A. Ciriano, A. J. Edwards, F. J. Lahoz, L. A. Oro, and J. J. Pérez-Torrente (1999). Organometallics18, 3025–3034.

    CAS  Google Scholar 

  157. H. J. Haupt, R. Wittbecker, and U. Florke (2001). Z. Anorg. Allg. Chem.627, 472–484.

    CAS  Google Scholar 

  158. C. U. Pittman Jr., M. G. Richmond, M. Absi-Halabi, H. Beurich, F. Richter, and H. Vahrenkamp (1982). Angew. Chem. Int. Ed.21, 786–787.

    Google Scholar 

  159. P. A. Shapley, H.-C. Liang, and N. C. Dopke (2001). Organometallics20, 4700–4704.

    CAS  Google Scholar 

  160. M. Nagaoka, T. Kawashima, H. Suzuki, and T. Takao (2016). Organometallics35, 2348–2360.

    CAS  Google Scholar 

  161. Y. Li, W.-X. Pan, and W.-T. Wong (2002). J. Clust. Sci.13, 223–233.

    Google Scholar 

  162. T. Murata, Y. Mizobe, H. Gao, Y. Ishii, T. Wakabayashi, F. Nakano, T. Tanase, S. Yano, and M. Hidai (1994). J. Am. Chem. Soc.116, 3389–3398.

    CAS  Google Scholar 

  163. T. Wakabayashi, Y. Ishii, T. Murata, Y. Mizobe, and M. Hidai (1995). Tetrahedron Lett.36, 5585.

    CAS  Google Scholar 

  164. D. Masui, Y. Ishii, and M. Hidai (1998). Chem. Lett.27, 717–718.

    Google Scholar 

  165. D. Masui, T. Kochi, Z. Tang, Y. Ishii, Y. Mizobe, and M. Hidai (2001). J. Organomet. Chem.620, 69–79.

    CAS  Google Scholar 

  166. T. Wakabayashi, Y. Ishii, K. Ishikawa, and M. Hidai (1996). Angew. Chem. Int. Ed.35, 2123–2124.

    CAS  Google Scholar 

  167. I. Takei, Y. Enta, Y. Wakebe, T. Suzuki, and M. Hidai (2006). Chem. Lett.35, 590–591.

    CAS  Google Scholar 

  168. I. Takei, Y. Wakebe, K. Suzuki, Y. Enta, T. Suzuki, Y. Mizobe, and M. Hidai (2003). Organometallics22, 4639–4641.

    CAS  Google Scholar 

  169. M. Feliz, E. Guillamón, R. Llusar, C. Vicent, S.-E. Stiriba, J. Pérez-Prieto, and M. Barberis (2006). Chem. Eur. J.12, 1486–1492.

    CAS  PubMed  Google Scholar 

  170. E. Guillamón, R. Llusar, J. Pérez-Prieto, and S.-E. Stiriba (2008). J. Organomet. Chem.693, 1723–1727.

    Google Scholar 

  171. Y. Tao, Y. Zhou, J. Qu, and M. Hidai (2010). Tetrahedron Lett.51, 1982–1984.

    CAS  Google Scholar 

  172. Y. Tao, B. Wang, B. Wang, L. Qu, and J. Qu (2010). Org. Lett.12, 2726–2729.

    CAS  PubMed  Google Scholar 

  173. Y. Tao, B. Wang, J. Zhao, Y. Song, L. Qu, and J. Qu (2012). J. Org. Chem.77, 2942–2946.

    CAS  PubMed  Google Scholar 

  174. I. Takei, K. Dohki, K. Kobayashi, T. Suzuki, and M. Hidai (2005). Inorg. Chem.44, 3768–3770.

    CAS  PubMed  Google Scholar 

  175. B. P. Hitchcock, L. D. Hughes, J. M. Maguire, K. Marjani, L. R. Richards (1997). J. Chem. Soc, Dalton Trans. pp. 4747–4752.

  176. S. Kuwata, Y. Mizobe, and M. Hidai (1994). Inorg. Chem.33, 3619–3620.

    CAS  Google Scholar 

  177. M. Shenglof, G. A. Molander, and J. Blum (2006). Synthesis (Stuttg)2006, 111–114.

    Google Scholar 

  178. M. Shieh, Y. H. Liu, Y. H. Li, C. N. Lin, and C. C. Wang (2018). J. Organomet. Chem.867, 161–169.

    CAS  Google Scholar 

Download references

Funding

This study was supported by Det Frie Forskningsråd, Natur og Univers (Grant Number 8102-00004B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Nielsen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nielsen, M.T., Padilla, R. & Nielsen, M. Homogeneous Catalysis by Organometallic Polynuclear Clusters. J Clust Sci 31, 11–61 (2020). https://doi.org/10.1007/s10876-019-01635-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01635-3

Keywords

Navigation