Skip to main content
Log in

Assays Evaluating Antimicrobial Activity of Nanoparticles: A Myth Buster

  • Brief Communication
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The kingdom of interdisciplinary research is advancing forcefully; nanotechnology is one discipline that has impressed biologist, physicist, chemists, engineers and physicians. For studying the antimicrobial activity of nanomaterials, standard protocols that were used earlier for assessing the efficiency of antibiotics and compounds were taken for granted. The disc diffusion and well diffusion methods were ideally designed for studying bactericidal activity of diffusible compounds, mainly antibiotics and not for a particulate interaction based systems. A mere extrapolation of the testing method for testing nanoparticles, with an exclusion of the plate count method, appears to have stepped out of the fundamental principle whereby nanomaterials and microbes are required to interact. This report highlights the flaw in the results obtained from using disc/well diffusion methods for determining the bioactivity of nanomaterials, owing to the physical barrier between bacteria and the nanoparticles. A more realistic and reliable method, where the nanoparticles and microbial cells are put into an open base where they can freely interact is mandatory to assess toxicity/compatibility of nanomaterials. Failure in utilizing the apt testing mode, may eventually lead to declaring toxic nanomaterials as non-toxic and underestimating the antimicrobial ability of few other potent nanomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. R. Feynman (1991). Science 254, 1300–1301.

    Article  Google Scholar 

  2. K. Eric Drexler Engines of Creation: The Coming Era of Nanotechnology (Doubleday, New York, 1986). ISBN 0-385-19973-2.

    Google Scholar 

  3. K. Eric Drexler Nanosystems: Molecular Machinery, Manufacturing, and Computation (Wiley, New York, 1992). ISBN 0-471-57547-X.

    Google Scholar 

  4. R. Saini, S. Saini, and S. Sharma (2010). J. Cutan. Aesthet. Surg. 3, (1), 32–33.

    Article  Google Scholar 

  5. C. Buzea, I. Pacheco, and K. Robbie (2007). Biointerphases 2, (4), MR17-71.

  6. G. Binnig and H. Rohrer (1986). IBM J. Res. Dev. 30, (4), 355–369.

    CAS  Google Scholar 

  7. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley (1985). Nature 318, 162–163.

    Article  CAS  Google Scholar 

  8. W. W. Adams and R. H. Baughman (2005). Science 310, (5756), 1916.

    Article  CAS  Google Scholar 

  9. G. M. Whitesides (2005). Small 1, (2), 172–179.

    Article  CAS  Google Scholar 

  10. J. Uldrich and D. Newberry The Next Big Thing Is Really Small: How Nanotechnology Will Change the Future (Crown Publishing Group, New York, 2003). ISBN 10: 1400046890/ISBN 13: 9781400046898.

  11. U. Muthukumaran, M. Govindarajan, and M. Rajeswary (2015). Parasitol. Res. 114, 1817.

    Article  Google Scholar 

  12. M. Zhang, M. Liu, H. Prest, and S. Fischer (2008). Nano Lett. 8, 1277.

    Article  CAS  Google Scholar 

  13. S. H. Jeong, S. Y. Yeo, and S. C. Yi (2005). J. Mater. Sci. 40, 5407.

    Article  CAS  Google Scholar 

  14. N. Savithramma, R. M. Linga, K. Rukmini, and D. P. Suvarnalatha (2011). Int. J. ChemTech. Res. 3, 1394.

    CAS  Google Scholar 

  15. A. Saxena, R. M. Tripathi, and R. P. Singh (2010). Dig. J. Nanomater. Biostruct. 5, 427.

    Google Scholar 

  16. G. Benelli and C. M. Lukehart (2017). J. Clust. Sci. 28, 1–2.

    Article  CAS  Google Scholar 

  17. G. Benelli (2016). Enzyme Microb. Technol. 95, 58–68.

    Article  CAS  Google Scholar 

  18. R. Rajan, K. Chandran, S. L. Harper, S. I. Yun, and P. T. Kalaichelvan (2015). Ind. Crops Prod. 70, 356–373.

    Article  CAS  Google Scholar 

  19. G. Benelli (2017). Acta Trop. 178, 73–80.

    Article  Google Scholar 

  20. G. Benelli, R. Pavela, F. Maggi, R. Petrelli, and M. Nicoletti (2017). J. Clust. Sci. 28, 3–10.

    Article  CAS  Google Scholar 

  21. G. Benelli, F. Maggi, D. Romano, C. Stefanini, B. Vaseeharan, S. Kumar, A. Higuchi, A. A. Alarfaj, H. Mehlhorn, and A. Canale (2017). Ticks Tick Borne Dis. 8, (6), 821–826.

    Article  Google Scholar 

  22. R. Kumar, M. Sharon, and A. K. Choudhary (2010). J. Phytol. 2, 83–92.

    Google Scholar 

  23. J. M. Hajipour, K. M. Fromm, A. A. Ashkarran, D. J. Aberasturi, I. R. Larramendi, T. Rojo, V. Serpooshan, W. J. Parak, and M. Mahmoudi (2012). Trend Biotechnol. 30, 499–511.

    Article  CAS  Google Scholar 

  24. S. S. Zinjarde (2012). Chron. Young Sci. 3, 74–81.

    Article  CAS  Google Scholar 

  25. P. L. Kashyap, S. Kumar, A. K. Srivastava, and A. K. Sharma (2013). World J. Microbiol. Biotechnol. 29, 191–207.

    Article  CAS  Google Scholar 

  26. S. I. Galdiero, A. Falanga, M. Vitiello, M. Cantisani, V. Marra, and M. Galdiero (2011). Molecules 16, (10), 8894–8918.

    Article  CAS  Google Scholar 

  27. S. Gunalan, R. Sivaraj, and V. Rajendran (2012). Prog. Nat. Sci. Mater. Int. 22, 693.

    Article  Google Scholar 

  28. J. S. Devi and B. V. Bhimba (2012). Sci. Rep. 1, 242.

    Google Scholar 

  29. P. Swain, S. K. Nayak, A. Sasmal, T. Behera, S. K. Barik, S. K. Swain, S. S. Mishra, A. K. Sen, J. K. Das, and P. Jayasankar (2014). World J. Microbiol. Biotechnol. 30, 2491.

    Article  CAS  Google Scholar 

  30. V. Patel, D. Berthold, P. Puranik, and M. Gantar (2015). Biotechnol. Rep. 5, 112.

    Article  Google Scholar 

  31. T. T. Duong, et al. (2016). Adv. Nat. Sci: Nanosci. Nanotechnol. 7, 035018.

    Google Scholar 

  32. S. Chun, M. Muthu, E. Gansukh, P. Thalappil, and J. Gopal (2016). Sci. Rep. 6, 35586.

    Article  CAS  Google Scholar 

  33. J. Gopal, M. Muthu, and S. Chun (2015). RSC Adv. 5, 48391–48398.

    Article  CAS  Google Scholar 

  34. J. Gopal, H. N. Abdelhamid, J. H. Huang, and H. F. Wu (2016). Sens. Actuators B Chem. 224, 413–424.

    Article  CAS  Google Scholar 

  35. J. Gopal, H. F. Wu, and G. Gangaraju (2011). J. Mater. Chem. 21, 13445–13451.

    Article  CAS  Google Scholar 

  36. J. Gopal, H. F. Wu, and C. H. Lee (2011). Analyst 136, 5077–5083.

    Article  CAS  Google Scholar 

  37. J. Gopal, J. Narayana, and H. F. Wu (2011). Biosens. Bioelectron. 27, 201–206.

    Article  CAS  Google Scholar 

  38. J. Gopal, C. H. Lee, and H. F. Wu (2010). Anal. Chem. 82, 9617–9621.

    Article  CAS  Google Scholar 

  39. N. G. Heatley (1944). Biochem. J. 38, 61–65.

    Article  CAS  Google Scholar 

  40. CLSI, Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved Standard, 7th edn., CLSI document M02-A11. Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087, USA, 2012.

  41. CLSI, Method for Antifungal Disk Diffusion Susceptibility Testing of Yeasts, Approved Guideline. CLSI document M44-A. CLSI, 940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898, USA, 2004.

  42. S. Magaldi, S. Mata-Essayag, C. Hartung de Capriles, C. Perez, M. T. Colella, C. Olaizola, and Y. C. Ontiveros (2004). Int. J. Infect. Dis. 8, (1), 39–45.

    Article  CAS  Google Scholar 

  43. C. Valgas, S. M. De Souza, E. F. A. Smânia, and A. Smânia (2007). Braz. J. Microbiol. 38, 369–380.

    Article  Google Scholar 

  44. APHA Standard Methods for the Examination of Water and Wastewater, 14th ed (APHA, Washington, DC, 1989).

    Google Scholar 

  45. J. Gopal, M. Manikandan, N. Hasan, C. H. Lee, and H. F. Wu (2013). J. Mass Spectrom. 48, 119–127.

    Article  CAS  Google Scholar 

  46. H. F. Wu, G. Judy, and M. Manikandan (2012). J. Mass Spectrom. 47, 355–363.

    Article  CAS  Google Scholar 

  47. Y. N. Slavin, J. Asnis, U. O. Häfeli, and H. Bach (2017). J. Nanobiotechnol. 15, 65.

    Article  Google Scholar 

  48. H. P. Borase, C. D. Patil, R. K. Suryawanshi, S. H. Koli, B. V. Mohite, G. Benelli, and S. V. Patil (2017). Bioprocess Biosyst. Eng. 40, 1437–1446.

    Article  CAS  Google Scholar 

  49. G. D. Saratale, R. G. Saratale, G. Benelli, G. Kumar, A. Pugazhendhi, D. S. Kim, and H. S. Shin (2017). J. Clust. Sci. 28, (3), 1709–1727.

    Article  CAS  Google Scholar 

  50. P. Venkatachalam, T. Kayalvizhi, J. Udayabanu, G. Benelli, and N. Geetha (2017). J. Clust. Sci. 28, (1), 607–619.

    Article  CAS  Google Scholar 

  51. J. M. Khaled, N. S. Alharbi, S. Kadaikunnan, A. S. Alobaidi, M. N. Al-Anbr, K. Gopinath, and G. Benelli (2017). J. Clust. Sci. 28, (5), 3009–3019.

    Article  CAS  Google Scholar 

  52. R. G. Saratale, G. Benelli, G. Kumar, D. S. Kim, and G. D. Saratale (2017). Environ. Sci. Pollut. Res. Int. 1–15. https://doi.org/10.1007/s11356-017-9581-5.

  53. R. G. Saratale, H. S. Shin, G. Kumar, G. Benelli, G. S. Ghodake, Y. Y. Jiang, and G. D. Saratale (2017). Environ. Sci. Pollut. Res. Int. 1-14. https://doi.org/10.1007/s11356-017-8724-z.

  54. B. Banumathi, B. Vaseeharan, R. Ishwarya, M. Govindarajan, N. S. Alharbi, S. Kadaikunnan, and G. Benelli (2017). Parasitol. Res. 6, (6), 1637–1651.

    Article  Google Scholar 

  55. M. Abinaya, B. Vaseeharan, M. Divya, A. Sharmili, M. Govindarajan, N. Alharbi, and G. Benelli (2018). J Trace Elem. Med. Biol. 45, 93–103.

    Article  CAS  Google Scholar 

  56. M. Składanowski, M. Wypij, and D. Laskowski (2017). J. Clust. Sci. 28, 59. https://doi.org/10.1007/s10876-016-1043-6.

    Article  Google Scholar 

  57. J. Gopal, C. H. Lee, and H. F. Wu (2010). Anal. Chem. 82, 9617–9621.

    Article  CAS  Google Scholar 

  58. J. Gopal, R. P. George, P. Muraleedharan, and H. S. Khatak (2004). Biofouling 20, 167–175.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the KU research professor program of Konkuk University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iyyakkannu Sivanesan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopal, J., Chun, S., Anthonydhason, V. et al. Assays Evaluating Antimicrobial Activity of Nanoparticles: A Myth Buster. J Clust Sci 29, 207–213 (2018). https://doi.org/10.1007/s10876-018-1334-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-018-1334-1

Keywords

Navigation