Skip to main content
Log in

Graphene Oxide Doped with PbO Nanoparticles, Synthesis by Microwave Assistant Thermal Decomposition and Investigation of Optical Property

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this research work for the first time, PbO/GrO nanoporouses were prepared by direct thermal decomposition method with PbSO4 nanostructures as a precursor. The precursor was calcinated in air for 2 h at 250, 260, 270 °C. The XRD studies indicated the production of pure PbO/GrO nanocomposites after thermal decomposition. In finally the efficiency of PbO/GrO nanocomposites for photocatalyst investigation at decolorization of methylene blue using visible light irradiation has been evaluated. Samples were characterized by X-ray diffraction (XRD), atomic force microscopy, scanning electron microscopy, transmission electron microscopy and Photoluminescence spectra. The XRD results indicated that the PbO/GrO nanocomposites were synthesis without any impurities could be obtained after thermal decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. U. Czaja, N. Trukhan, and U. Müller (2009). Chem. Soc. Rev. 38, 1284.

    Article  CAS  Google Scholar 

  2. H. Asadollahzadeh, M. Ranjbar, and M. A. Taher (2014). J. Indus. Eng. Chem. 20, 4321.

    Article  CAS  Google Scholar 

  3. J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, and J. T. Hupp (2009). Chem. Soc. Rev. 38, 1450.

    Article  CAS  Google Scholar 

  4. U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt, and J. Pastré (2006). J. Mater. Chem. 16, 626.

    Article  CAS  Google Scholar 

  5. O. Yaghi, M. O’Keeffe, N. Ockwig, H. Chae, M. Eddaoudi, and J. Kim (2003). Nature 423, 705.

    Article  CAS  Google Scholar 

  6. X. Li, G. He, G. Xiao, H. Liu, and M. Wang (2009). J. Colloid Interface Sci. 333, 465.

    Article  CAS  Google Scholar 

  7. F. Luo and S. R. Batten (2010). Dalton Trans. 39, 4485.

    Article  CAS  Google Scholar 

  8. Y. M. Song, F. Luo, M. B. Luo, Z. W. Liao, G. M. Sun, X. Z. Tian, Y. Zhu, Z. J. Yuan, S. J. Liu, W. Y. Xu, and X. F. Feng (2012). Chem. Commun. 4, 1006.

    Article  Google Scholar 

  9. B. Zhang, J. Zhong, and Z. Cheng (2011). J. Power Sources 196, 571.

    Google Scholar 

  10. H. Karami and Alipour (2009). Int. J. Electrochem. Sci. 4, 151.

    Google Scholar 

  11. C. J. Kepert, T. J. Prior, and M. J. Rosseinsky (2000). J. Am. Chem. Soc. 122, 5158.

    Article  CAS  Google Scholar 

  12. L. Y. Xin, G. Z. Liu, X. L. Li, and L. Y. Wang (2012). Cryst. Growth Des. 12, 147.

    Article  CAS  Google Scholar 

  13. M. Dinca and J. R. Long (2005). J. Am. Chem. Soc. 127, 9376.

    Article  CAS  Google Scholar 

  14. Q. Sun, Y.-Q. Wang, A.-L. Cheng, K. Wang, and E.-Q. Gao (2012). Cryst. Growth Des. 12, 2234.

    Article  CAS  Google Scholar 

  15. H.-X. Deng, C. J. Doonan, H. Furukawa, R. B. Ferreira, J. Towne, C. B. Knobler, B. Wang, and O. M. Yaghi (2010). Science 327, 846.

    Article  CAS  Google Scholar 

  16. H.-L. Jiang, Y. Tatsu, Z.-H. Lu, and Q. Xu (2010). J. Am. Chem. Soc. 132, 5586.

    Article  CAS  Google Scholar 

  17. K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T.-H. Bae, and J. R. Long (2011). Chem. Rev. 112, 724.

    Article  Google Scholar 

  18. J. R. Li, J. Sculley, and H.-C. Zhou (2011). Chem. Rev. 112, 869.

    Article  Google Scholar 

  19. D. López, R. Buitrago, A. Sepúlveda-Escribano, F. Rodríguez- Reinoso, and F. Mondragón (2008). J. Phys. Chem. C 112, 15335.

    Article  Google Scholar 

  20. D. Britt, D. Tranchemontagne, and O. M. Yaghi (2008). Proc. Natl. Acad. Sci. 105, 11623.

    Article  CAS  Google Scholar 

  21. M. M. Foroughi and M. Ranjbar (2017). J. Mater. Sci. Mater. Electron. 28, 1359.

    Article  CAS  Google Scholar 

  22. S. Ma, J. A. Fillinger, M. W. Ambrogio, J. L. Zuo, and H. C. Zhou (2007). Inorg. Chem. Commun. 10, 220.

    Article  CAS  Google Scholar 

  23. A. Mohadesi, M. Ranjbar, and S. M. Hosseinpour-Mashkani (2014). Superlattices Microstruct. 66, 48.

    Article  CAS  Google Scholar 

  24. X. Cao, C. Zhao, X. Lan, G. Gao, W. Qian, and Y. Guo (2007). J. Phys. Chem. C 111, 6658.

    Article  CAS  Google Scholar 

  25. M. Ranjbar, M. A. Taher, and S. M. Hosseinpour-Mashkani (2013). J. Clust. Sci. 24, 956.

    Article  Google Scholar 

  26. M. Ranjbar, M. A. Taher, and A. Sam (2014). J. Clust. Sci. 25, 1657.

    Article  CAS  Google Scholar 

  27. H. Fazelirad, M. Ranjbar, M. A. Taher, and G. Sargazi (2015). J. Ind. Eng. Chem. 21, 889.

    Article  CAS  Google Scholar 

  28. C. S. Carney, C. J. Gump, and A. W. Weimer (2006). Mater. Sci. Eng. A. 431, 1.

    Article  Google Scholar 

  29. M. Ranjbar, M. A. Taher, and A. Sam (2015). J. Mater. Sci. Mater. Electron. 26, 8.

    Article  Google Scholar 

Download references

Acknowledgements

Authors are grateful Kerman Branch, Islamic Azad University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Mehdi Foroughi or Mehdi Ranjbar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foroughi, M.M., Ranjbar, M. Graphene Oxide Doped with PbO Nanoparticles, Synthesis by Microwave Assistant Thermal Decomposition and Investigation of Optical Property. J Clust Sci 28, 2847–2856 (2017). https://doi.org/10.1007/s10876-017-1248-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1248-3

Keywords

Navigation