Skip to main content
Log in

Effect of Sulfur Source on Cadmium Sulfide Nanostructures Morphologies via Simple Hydrothermal Route

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Different morphologies of cadmium sulfide nanostructures were synthesized via the reaction among a new inorganic precursor, cadmium phthalate, [Cd(pht)(H2O)] n , and different sulfur sources. The as-synthesized CdS nanosturctures were characterized by X-ray diffraction pattern, scanning electron microscopy, transmission electron microscopy and selected area electron diffraction. This study focuses on the effect of different sulfur sources on the crystal phase and morphology of the products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P. Liska, K. R. Thampi, M. Gratzel, D. Bremaud, D. Rudmann, H. M. Upadhyaya, and A. N. Tiwari (2006). Appl. Phys. Lett. 88, 203103.

    Article  Google Scholar 

  2. J. Chen, S. L. Li, Q. Xu, and K. Tanaka (2002). Chem. Commun. 16, 1722–1723.

    Article  Google Scholar 

  3. C. Karunakaran and S. Senthilvelan (2005). Sol. Energy 79, 505–512.

    Article  CAS  Google Scholar 

  4. N. Z. Bao, L. M. Shen, T. Takata, and K. Domen (2008). Chem. Mater. 20, 110–117.

    Article  CAS  Google Scholar 

  5. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi (2000). Science 290, 314–316.

    Article  CAS  Google Scholar 

  6. A. Pan, D. Liu, R. Liu, F. Wang, X. Zhu, and B. Zou (2005). Small 1, 980–983.

    Article  CAS  Google Scholar 

  7. K. Sato, Y. Tachibana, S. Hattori, T. Chiba, and S. Kuwabata (2008). J Colloid Interface Sci 324, 257–260.

    Article  CAS  Google Scholar 

  8. M. B. Mohamed, K. Z. Ismail, S. Link, and M. A. E-Sayed (1998). J. Phys. Chem. B 102, 9370–9374.

    Article  CAS  Google Scholar 

  9. M. Zhou, S. Yan, Y. Shi, M. Yang, H. Sun, J. Wang, Y. Yin, and F. Gao (2013). Appl. Surf. Sci. 273, 89–93.

    Article  CAS  Google Scholar 

  10. Y. Li, H. Liao, Y. Ding, Y. Fan, Y. Zhang, and Y. Qian (1999). Inorg. Chem. 38, 1382–1387.

    Article  CAS  Google Scholar 

  11. M. Salavati-Niasari, M. R. Loghman-Estarki, and F. Davar (2008). Chem. Eng. J. 145, 346–350.

    Article  CAS  Google Scholar 

  12. M. Salavati-Niasari, F. Davar, and M. R. Loghman-Estarki (2009). J. Alloys Compd 481, 776–780.

    Article  CAS  Google Scholar 

  13. X. W. Ge, Y. H. Ni, and Z. C. Zhang (2002). Radiat. Phys. Chem. 64, 223–227.

    Article  CAS  Google Scholar 

  14. J. T. Hu, T. W. Odom, and C. M. Lieber (1999). Acc. Chem. Res. 32, 435–445.

    Article  CAS  Google Scholar 

  15. H. Q. Gao, Y. Hu, J. M. Hong, H. B. Liu, G. Yin, B. L. Li, C. Y. Tie, and Z. Xu (2001). Adv. Mater. 13, 1393–1394.

    Article  Google Scholar 

  16. Y. J. Xiong, Y. Xie, J. Yang, R. Zhang, C. Z. Wu, and G. A. Du (2002). J. Mater. Chem. 12, 3712–3716.

    Article  CAS  Google Scholar 

  17. M. Salavati-Niasari, M. R. Loghman-Estarki, and F. Davar (2009). Inorganica Chim. Acta 362, 3677–3683.

    Article  CAS  Google Scholar 

  18. G. Tai and W. Guo (2008). Ultrason. Sonochem. 15, 350–356.

    Article  CAS  Google Scholar 

  19. F. H. Zhao, Q. Su, N. S. Xu, C. R. Ding, and M. M. Wu (2006). J. Mater. Sci. 41, 1449–1454.

    Article  CAS  Google Scholar 

  20. W. Qingqing, X. Gang, and H. Gaorong (2006). Cryst. Growth Des. 6, 1776–1780.

    Article  Google Scholar 

  21. M. Chen, L. Pan, J. Cao, H. Ji, G. Ji, X. Ma, and Y. Zheng (2006). Mater. Lett. 60, 3842–3845.

    Google Scholar 

  22. X. Liu (2005). Mater. Chem. Phys. 91, 212–216.

    Article  CAS  Google Scholar 

  23. X.-H. Yang, Q.-S. Wu, L. Li, Y.-P. Ding, and G.-X. Zhang (2005). Colloids Surf. A 264, 172–178.

    Article  CAS  Google Scholar 

  24. C. J. Barrelet, Y. Wu, D. C. Bell, and C. M. Lieber (2003). J. Am. Chem. Soc. 125, 11498–11499.

    Article  CAS  Google Scholar 

  25. F. Davar, M. Salavati-Niasari, and M. Mazaheri (2009). Polyhedron 28, 3975–3978.

    Article  CAS  Google Scholar 

  26. M. Muruganandham, Y. Kusumoto, C. Okamoto, A. Muruganandham, M. Abdulla-Al-Mamun, and B. Ahmmad (2009). J. Phys. Chem. C 113, 19506–19517.

    Article  CAS  Google Scholar 

  27. S. G. Baca, I. G. Filippova, O. A. Gherco, M. Gdaniec, Y. A. Simonov, N. V. Gerbeleu, P. Franz, R. Basler, and S. Decurtins (2004). Inorgan. Chim. Acta 357, 3419–3429.

    Article  CAS  Google Scholar 

  28. E. Cardarelli, G. D’Ascenzo, A. D. Magrí, and A. Pupella (1979). Thermochim. Acta 33, 267–273.

    Article  CAS  Google Scholar 

  29. M. Salavati-Niasari, E. Esmaeili, and F. Davar (2013). Combin. Chem. High Throughput Screen. 16, 47–56.

    Article  CAS  Google Scholar 

  30. H. Klug and L. Alexander (eds.) X-ray Diffraction Procedures (Wiley, New York, 1962), p. 125.

    Google Scholar 

  31. X. He and L. Gao (2009). J. Phys. Chem. C 113, 10981–10989.

    Article  CAS  Google Scholar 

  32. F. Davar, M. R. Loghman-Estarki, M. Salavati-Niasari, and R. Ashiri (2014). Int. J. Appl. Ceramic Technol. 11, 637–644.

    Article  CAS  Google Scholar 

  33. D. Ghanbari, M. Salavati-Niasari, S. Karimzadeh, and S. Gholamrezaei (2014). J. Nanostruct. 4, 227–232.

    Google Scholar 

  34. H. R. Momenian, M. Salavati-Niasari, D. Ghanbari, B. Pedram, F. Mozaffar, and S. Gholamrezaei (2014). J. Nanostruct. 4, 99–104.

    Article  Google Scholar 

  35. G. Nabiyouni, S. Sharifi, D. Ghanbari, and M. Salavati-Niasari (2014). J. Nanostruct. 4, 317–323.

    Google Scholar 

  36. M. Panahi-Kalamuei, M. Mousavi-Kamazani, and M. Salavati-Niasari (2014). J. Nanostruct. 4, 459–465.

    Google Scholar 

  37. F. Beshkar and M. Salavati-Niasari (2015). J. Nanostruct. 4, 17–23.

    Google Scholar 

Download references

Acknowledgments

Authors are grateful to the council of Iran National Science Foundation and University of Kashan for their unending effort to provide financial support to undertake this work by Grant No (159271/627).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Salavati-Niasari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esmaeili, E., Sabet, M., Salavati-Niasari, M. et al. Effect of Sulfur Source on Cadmium Sulfide Nanostructures Morphologies via Simple Hydrothermal Route. J Clust Sci 27, 351–360 (2016). https://doi.org/10.1007/s10876-015-0934-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-015-0934-2

Keywords

Navigation