Skip to main content
Log in

Biogenic Synthesis of Silver Nanoparticles Using Cnidium officinale Extract and Their Catalytic Reduction of 4-Nitroaniline

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Silver nanoparticles (AgNPs) with two different morphologies were synthesized using aqueous extract of Cnidium officinale rhizomes under different reaction conditions and applied to the facile aqueous phase reduction of 4-nitroaniline (4-NA) as catalysts. The synthesized AgNPs are characterized by UV–Visible spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) method and high resolution transmission electron microscopy (HR-TEM) with energy dispersive X-ray spectroscopy (EDS) analysis. HR-TEM showed that the synthesized AgNPs had two different morphological forms; truncated triangular prism shapes with a mean size of ~35 nm and spherical shapes with a mean size of ~9 nm. The HR-TEM and XRD results are consistent with the standard values. The catalytic activities of both AgNPs were compared on the reduction of 4-NA in water by NaBH4 as a reducing agent. The reduction of 4-NA was monitored using UV–Visible spectroscopy. The ~9 nm (spherical) sized AgNPs showed superior catalytic activity than the larger AgNPs. The calculated rate constant (k) for the catalytic reduction of 4-nitroanilie by spherical AgNPs was 11.16 × 10−3 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J. L. Elechiguerra, J. Reyes-Gasga, and M. J. Yacaman (2006). J. Mater. Chem. 16, 3906.

    Article  CAS  Google Scholar 

  2. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz (2003). J. Phys. Chem. B 107, 668.

    Article  CAS  Google Scholar 

  3. M. Chen, Y. Cai, Z. Yan, and D. W. Goodman (2006). J. Am. Chem. Soc. 128, 6341.

    Article  CAS  Google Scholar 

  4. C. Medina, M. J. Santos-Martinez, A. Radomski, O. I. Corrigan, and M. W. Radomski (2007). Br. J. Pharmacol. 150, 552.

    Article  CAS  Google Scholar 

  5. A. Moores and F. Goettmann (2006). New J. Chem. 30, 1121.

    Article  CAS  Google Scholar 

  6. T. K. Sau, A. L. Rogach, F. Jackel, T. A. Klar, and J. Feldmann (2010). Adv. Mater. 22, 1805.

    Article  CAS  Google Scholar 

  7. K. G. Stamplecoskie and J. C. Scaiano (2010). J. Am. Chem. Soc. 132, 1825.

    Article  CAS  Google Scholar 

  8. Z. Sadowski, I. H. Maliszewska, B. Grochowalska, I. Polowczyk, and T. Kozlecki (2008). Mater. Sci-Poland 26, 419.

    CAS  Google Scholar 

  9. S. Yallappa and J. Manjanna (2014). J. Clust. Sci 25, 1449.

    Article  CAS  Google Scholar 

  10. S. J. Hoseini, M. Darroudi, R. K. Oskuee, L. Gholami, and A. K. Zak (2015). Adv. Powder Technol 26, 991.

    Article  CAS  Google Scholar 

  11. A. Miri, M. Sarani, M. R. Bazaz, and M. Darroudi (2015). Spectrochim. Acta A 141, 287.

    Article  CAS  Google Scholar 

  12. M. Venkatesham, D. Ayodhya, A. Madhusudhan, A. S. Kumari, G. Veerabhadram, and K. G. Mangatayaru (2014). J. Clust. Sci. 25, 409.

    Article  CAS  Google Scholar 

  13. S. Iravani (2011). Green Chem. 13, 2638.

    Article  CAS  Google Scholar 

  14. S. A. Umoren, I. B. Obot, and Z. M. Gasem (2014). J. Mater. Environ. Sci. 5, 907.

    Google Scholar 

  15. M. Noruzi, D. Zare, and D. Davoodi (2012). Spectrochim. Acta A 94, 84.

    Article  CAS  Google Scholar 

  16. J. B. Jeong, J. H. Park, H. K. Lee, S. Y. Ju, S. C. Hong, J. R. Lee, G. Y. Chung, J. H. Lim, and H. J. Jeong (2009). Food Chem. Toxicol. 47, 525.

    Article  CAS  Google Scholar 

  17. M. Ramalingam and P. Yong-Ki (2010). Pharmacogn. Mag. 6, 323.

    Article  CAS  Google Scholar 

  18. K. Bae, Y. Choi, S. Kim, and Y. Kim (2011). Molecules 16, 8833.

    Article  CAS  Google Scholar 

  19. T. Tsukamoto, Y. Ishikawa, and M. Miyazawa (2005). J. Agric. Food Chem. 53, 5549.

    Article  CAS  Google Scholar 

  20. J. Kwon and Y. Ahn (2002). J. Agric. Food Chem. 50, 4479.

    Article  CAS  Google Scholar 

  21. R. V. Jagadeesh, G. Wienhofer, F. A. Westerhaus, A. Surkus, M. Pohl, H. Junge, K. Junge, and M. Beller (2011). Chem. Commun. 47, 10972.

    Article  CAS  Google Scholar 

  22. K. Li, Z. Zheng, J. Feng, J. Zhang, X. Luo, G. Zhao, and X. Huang (2009). J. Hazard. Mater. 166, 1180.

    Article  CAS  Google Scholar 

  23. S. Eustis and M. A. El-Sayed (2006). Chem. Soc. Rev. 35, 209.

    Article  CAS  Google Scholar 

  24. M. Umadevi, M. R. Bindhu, and V. Sathe (2013). J. Mater. Sci. Technol. 29, 317.

    Article  CAS  Google Scholar 

  25. T. J. I. Edison and M. G. Sethuraman (2013). Spectrochim. Acta A 104, 262.

    Article  CAS  Google Scholar 

  26. A. Parveen and S. Rao (2015). J. Clust. Sci. 26, 1295.

    Article  CAS  Google Scholar 

  27. S. L. Smitha, K. M. Nissamudeen, D. Philip, and K. G. Gopchandran (2008). Spectrochim. Acta A 71, 186.

    Article  CAS  Google Scholar 

  28. T. J. I. Edison and M. G. Sethuraman (2012). Process Biochem. 47, 1351.

    Article  CAS  Google Scholar 

  29. S. K. Mehta, S. Chaudhary, and M. Gradzielski (2010). J. Colloid Interface Sci. 343, 447.

    Article  CAS  Google Scholar 

  30. A. J. Kora, S. R. Beedu, and A. Jayaraman (2012). Org. Med. Chem. Lett. 2, 1.

    Article  Google Scholar 

  31. N. Basavegowda, K. B. S. Magar, K. Mishra, and Y. R. Lee (2014). New J. Chem. 38, 5415.

    Article  CAS  Google Scholar 

  32. S. Sing, P. Patel, S. Jaiswal, A. A. Prabhune, C. V. Ramana, and B. L. V. Prasad (2009). New J. Chem. 33, 646.

    Article  Google Scholar 

  33. N. Singh and P. K. Khanna (2007). Mater. Chem. Phys. 104, 367.

    Article  CAS  Google Scholar 

  34. S. Li, Y. Shen, A. Xie, X. Yu, L. Qiu, L. Zhang, and Q. Zhang (2007). Green Chem. 9, 852.

    Article  CAS  Google Scholar 

  35. S. Sadhasivam, P. Shanmugam, and K. Yun (2010). Colloids Surf. B 81, 358.

    Article  CAS  Google Scholar 

  36. I. A. Wani, A. Ganguly, J. Ahmed, and T. Ahmad (2011). Mater. Lett. 65, 520.

    Article  CAS  Google Scholar 

  37. B. Tang, L. Sun, J. Li, M. Zhang, and X. Wang (2015). Chem. Eng. J. 260, 99.

    Article  CAS  Google Scholar 

  38. T. Tan, C. Tian, Z. Ren, J. Yang, Y. Chen, L. Sun, Z. Li, A. Wu, J. Yin, and H. Fu (2013). Phys. Chem. Chem. Phys. 15, 21034.

    Article  CAS  Google Scholar 

  39. S. Kundu, K. Wang, and H. Liang (2009). J. Phys. Chem. C 113, 5157.

    Article  CAS  Google Scholar 

  40. A. Gangula, R. Podila, M. Ramakrishna, L. Karanam, C. Janardhana, and A. M. Rao (2011). Langmuir 27, 15268.

    Article  Google Scholar 

  41. A. Hernández-Gordillo and V. R. González (2015). Chem. Eng. J. 261, 53.

    Article  Google Scholar 

  42. S. Wunder, F. Polzer, Y. Lu, Y. Mei, and M. Ballauff (2010). J. Phys. Chem. C 114, 8814.

    Article  CAS  Google Scholar 

  43. V. Reddy, R. S. Torati, S. Oh, and C. Kim (2013). Ind. Eng. Chem. Res. 52, 556.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2014R1A6A1031189).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Rok Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edison, T.N.J.I., Baral, E.R., Lee, Y.R. et al. Biogenic Synthesis of Silver Nanoparticles Using Cnidium officinale Extract and Their Catalytic Reduction of 4-Nitroaniline. J Clust Sci 27, 285–298 (2016). https://doi.org/10.1007/s10876-015-0929-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-015-0929-z

Keywords

Navigation