Skip to main content
Log in

A Kinetic and AFM Study of the Electrodeposition of Palladium Nanoclusters onto Highly Oriented Pyrolytic Graphite (HOPG)

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In the present work we have carried out a kinetic and morphological study of the palladium electrodeposition onto highly oriented pyrolitic graphite electrode from an aqueous solution [0.001 M PdCl2 + 1 M NH4Cl (pH 7)]. From the potentiostatic study were calculated the diffusion coefficient (3.2 × 10−6 cm2 s−1), the number of active nucleation sites (N 0), the nucleation rate (A) and the rate constant of the proton reduction process (k PR). A, N 0 and k PR values were potential dependent and they increased with an augment in the applied overpotential. At higher overpotential, it is possible to induce the formation of small Pd clusters with 5 nm in height and an average size of 20–30 nm in diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Yamauchi, H. Kobayashi, and H. Kitagawa (2009). Chem. Phys. Chem. 10, 2566.

    CAS  Google Scholar 

  2. C. Bianchini and P. K. Shen (2009). Chem. Rev. 109, 4183.

    Article  CAS  Google Scholar 

  3. X. W. Yu, P. G. Pickup, and J. Power (2008). Sources. 182, 124.

    Article  CAS  Google Scholar 

  4. S. A. Miscoria, G. D. Barrera, and G. A. Rivas (2002). Electroanalysis 14, 981.

    Article  CAS  Google Scholar 

  5. M. Rajkumar, C. P. Hong, and S. M. Chen (2013). Int. J. Electrochem. Sci. 8, 5262.

    CAS  Google Scholar 

  6. G. A. Somorjai Introduction to Surface Chemistry and Catalysis (Wiley, New York, 1994), pp. 1–18.

    Google Scholar 

  7. J. A. Rodriguez (1996). Surf. Sci. Rep. 24, 223.

    Article  CAS  Google Scholar 

  8. F. Yang, S. C. Kung, M. Cheng, J. C. Hemminger, and R. M. Penner (2010). ACS Nano 4, 5233.

    Article  CAS  Google Scholar 

  9. P. Diao, D. F. Zhang, M. Guo, and Q. Zhang (2007). J. Catal. 250, 247.

    Article  CAS  Google Scholar 

  10. L. A. Kibler, M. Kleinert, R. Randler, and D. M. Kolb (1999). Surf. Sci. 443, 19.

    Article  CAS  Google Scholar 

  11. D. Xu, X. Yan, P. Diao, and P. Yin (2014). J. Phys. Chem. C 118, 9758.

    Article  CAS  Google Scholar 

  12. J. O. Besenhard, U. Krebber, J. K. H. Hober, N. Kanani, and H. Meyer (1989). J. Electrochem. Soc. 136, 3608.

    Article  CAS  Google Scholar 

  13. A. Satire, M. Phaner, L. Pone, and G. N. Sauvion (1993). Appl. Surf. Sci. 70–71, 402.

    Google Scholar 

  14. S. Granjeaud, K. Yckache, M. Dayez, A. Humbert, C. Chapon, and C. R. Henry (1993). Microsc. Microanal. Microstruct. 4, 409.

    Article  CAS  Google Scholar 

  15. A. Humbert, M. Dyez, S. Graneaud, P. Ricci, C. Chapon, and C. R. Henry (1991). J. Vac. SCi. Technol. B9, 804.

    Article  Google Scholar 

  16. F. J. C. S. Aires, P. Sautet, G. Fuchs, J. L. Rousset, and P. Melinon (1993). Microsc. Microanal. Microstruct. 4, 441.

    Article  Google Scholar 

  17. R. Erlandsson, M. Eriksson, L. Olsson, U. Helmersson, I. Lundslrom, and L. G. Pertersson (1991). J. Vac. Sci. Technol. B9, 825.

    Article  Google Scholar 

  18. K. Murakami, K. Naoi, Yahikozawa, and Y. Takasu (1994). J. Electrochem. Soc. 141, 2511.

    Article  CAS  Google Scholar 

  19. X. Q. Tong, M. Aindow, and J. P. G. Fan (1995). J. Electroanal. Chem. 395, 117.

    Article  Google Scholar 

  20. A. M. Polcaro and S. Palmas (1991). Electrochim. Acta 36, 921.

    Article  CAS  Google Scholar 

  21. R. LePenven, W. Levason, and D. Pletcher (1990). J. Appl. Electrochem. 20, 399.

    Article  CAS  Google Scholar 

  22. C. K. Lai, Y. Y. Wang, and C. C. Wan (1992). J. Electroanal. Chem. 322, 267.

    Article  CAS  Google Scholar 

  23. M. E. Quayum, S. Ye, and K. Uosaki (2002). J. Electroanal. Chem. 520, 126.

    Article  CAS  Google Scholar 

  24. A. L. N. Pinheiro, M. S. Zei, M. F. Luo, and G. Ertl (2006). Surf. Sci. 600, 641.

    Article  CAS  Google Scholar 

  25. H. Duncan and A. Lasia (2007). Electrochim. Acta 52, 6195.

    Article  CAS  Google Scholar 

  26. M. Baldauf and D. M. Kolb (1996). J. Phys. Chem. 100, 11375.

    Article  CAS  Google Scholar 

  27. H. Naohara, S. Ye, and K. Uosaki (1998). J. Phys. Chem. B 102, 4366.

    Article  CAS  Google Scholar 

  28. H. Naohara, S. Ye, and K. Uosaki (1999). J. Electroanal. Chem. 473, 2.

    Article  CAS  Google Scholar 

  29. B. K. Kim, D. Seo, J. Y. Lee, H. Song, and J. Kwak (2010). Electrochem. Commun. 12, 1442.

    Article  CAS  Google Scholar 

  30. S. Gu, X. P. Wang, Y. Z. Wei, and B. Z. Fang (2014). Sci. China Chem. 57, 755.

    Article  CAS  Google Scholar 

  31. R. Gupta, S. K. Guin, and S. K. Aggarwal (2014). Electrochim. Acta 116, 314.

    Article  CAS  Google Scholar 

  32. M. A. Hossain, K. D. Cummins, Y. S. Park, and M. P. Soriaga (2012). Electrocatalysis 3, (3), 183.

    Article  CAS  Google Scholar 

  33. S. H. Ilias, K. Y. Kok, I. K. Ng, and N. U. Saidin (2013). J. Phys. 431, 012003.

    Google Scholar 

  34. B. Habibi (2013). Int. J. Hydrog. Energ. 38, 5464.

    Article  CAS  Google Scholar 

  35. R. M. Modibedi, E. K. Louw, M. K. Mathe, and K. I. Ozoemena (2013). ECS Trans. 50, (21), 9.

    Article  CAS  Google Scholar 

  36. N. Ibl, G. Gut, and M. Weber (1973). Electrochim. Acta 18, 307.

    Article  CAS  Google Scholar 

  37. M. F. Bell and J. A. Harrison (1973). J. Electroanal. Chem. 41, 15.

    Article  CAS  Google Scholar 

  38. O. Corduneanu, V. C. Diculescu, A. M. Chiorcea-Paquim, and A. M. Oliveira-Brett (2008). J. Electroanal. Chem. 624, 97.

    Article  CAS  Google Scholar 

  39. T. Alemu, B. D. Assresahegn, and T. R. Soreta (2014). Port. Electrochim. Acta 32, 21.

    Article  CAS  Google Scholar 

  40. M. Sawangphruk, A. Krittayavathananon, N. Chinwipas, S. Limtrakul, and J. S. Foord (2013). Fuel Cells 13, (5), 881.

    CAS  Google Scholar 

  41. S. S. Shendage, U. B. Patil, and J. M. Nagarkar (2013). Fuel Cells 13, (3), 364.

    Article  CAS  Google Scholar 

  42. R. M. Modibedi, M. K. Mathe, R. G. Motsoeneng, L. E. Khotseng, K. I. Ozoemena, and E. K. Louw (2014). Electrochim. Acta 128, 406.

    Article  CAS  Google Scholar 

  43. M. Rezaei, S. H. Tabaian, and D. F. Haghshenas (2013). Electrochimica Acta 87, 381.

    Article  CAS  Google Scholar 

  44. M. Rezaei, S. H. Tabaian, and D. F. Haghshenas (2012). J. Electroanal. Chem. 687, 95.

    Article  CAS  Google Scholar 

  45. B. Zhang, D. Ye, J. Li, X. Zhu, and Q. Liao (2012). J. Power Sources 214, 277.

    Article  CAS  Google Scholar 

  46. C. T. Hsieh, Y. Y. Liu, and A. K. Roy (2012). Electrochim. Acta 64, 205.

    Article  CAS  Google Scholar 

  47. M. Rezaei, S. H. Tabaian, and D. F. Haghshenas (2012). Electrochimica Acta 59, 360.

    Article  CAS  Google Scholar 

  48. I. Danaee (2011). J. Electroanal. Chem. 662, (2), 415.

    Article  CAS  Google Scholar 

  49. H. Meng, F. Xie, J. Chen, and P. K. Shen (2011). J. Mater. Chem. 21, 11352.

    Article  CAS  Google Scholar 

  50. I. Danaee (2013). J. Ind. Eng. Chem. 19, 1008.

    Article  CAS  Google Scholar 

  51. D.N. Escobar-Muñoz, A.K. Cuentas-Gallegos, M. Miranda-Hernández. ed. By L.H. Mendoza-Huizar (Research Signpost Publishing, Trindivirium, 2008), p. 89.

  52. B. Scharifker and G. Hills (1983). Electrochim. Acta 28, 879.

    Article  CAS  Google Scholar 

  53. B. R. Scharifker and J. Mostany (1984). J. Electroanal. Chem. 177, 13.

    Article  CAS  Google Scholar 

  54. L. Hermann and A. Tarallo (2000). Electrochem Commun. 2, 85.

    Article  Google Scholar 

  55. C. H. Rios-Reyes, M. Granados-Neri, and L. H. Mendoza-Huizar (2009). Quim. Nova 32, 2382.

    Article  CAS  Google Scholar 

  56. L. H. Mendoza-Huizar, J. Robles, and M. Palomar-Pardavé (2003). J. Electroanal. Chem. 545, 39.

    Article  CAS  Google Scholar 

  57. M. Palomar-Pardavé, B. R. Scharifker, E. M. Arce, and M. Romero-Romo (2005). Electrochim. Acta 50, 4736.

    Article  Google Scholar 

  58. A. Milchev (1991). J. Contemp. Phys. 32, 321.

    Article  CAS  Google Scholar 

  59. M. Noel and K. Vasu Cyclic Voltammetry and the Frontiers of Electrochemistry (Oxford and IBH Publishing, New Delhi, 1990), pp. 308–369.

    Google Scholar 

Download references

Acknowledgments

C.H.R.R. is grateful for a postdoctoral fellowship from CONACYT (290616). We gratefully acknowledge financial support from CONACyT projects INFR-2014-227999 and APOY-COMPL-2008 No. 91261 and to the Universidad Autónoma del Estado de Hidalgo in projects PIFI 2008-13M8U0017T-04-01 y PIFI-2009-13MSU0017T-04-01. M.R. acknowledges I.Q. Mario Monroy for the use of the microscopy facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. H. Mendoza-Huizar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendoza-Huizar, L.H., Garrido-Márquez, D., Rios-Reyes, C.H. et al. A Kinetic and AFM Study of the Electrodeposition of Palladium Nanoclusters onto Highly Oriented Pyrolytic Graphite (HOPG). J Clust Sci 26, 337–346 (2015). https://doi.org/10.1007/s10876-014-0837-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-014-0837-7

Keywords

Navigation