Skip to main content

Advertisement

Log in

Isolated Chronic Mucocutaneous Candidiasis due to a Novel Duplication Variant of IL17RC

  • Original Article
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Purpose

Inborn errors of the IL-17A/F-responsive pathway lead to chronic mucocutaneous candidiasis (CMC) as a predominant clinical phenotype, without other significant clinical manifestations apart from mucocutaneous staphylococcal diseases. Among inborn errors affecting IL-17-dependent immunity, autosomal recessive (AR) IL-17RC deficiency is a rare disease with only three kindreds described to date. The lack of an in vitro functional evaluation system of IL17RC variants renders its diagnosis difficult. We sought to characterize a 7-year-old Japanese girl with CMC carrying a novel homozygous duplication variant of IL17RC and establish a simple in vitro system to evaluate the impact of this variant.

Methods

Flow cytometry, qPCR, RNA-sequencing, and immunoblotting were conducted, and an IL17RC-knockout cell line was established for functional evaluation.

Results

The patient presented with oral and mucocutaneous candidiasis without staphylococcal diseases since the age of 3 months. Genetic analysis showed that the novel duplication variant (Chr3: 9,971,476-9,971,606 dup (+131bp)) involving exon 13 of IL17RC results in a premature stop codon (p.D457Afs*16 or p.D457Afs*17). Our functional evaluation system revealed this duplication to be loss-of-function and enabled discrimination between loss-of-function and neutral IL17RC variants. The lack of response to IL-17A by the patient’s SV40-immortalized fibroblasts was restored by introducing WT-IL17RC, suggesting that the genotype identified is responsible for her clinical phenotype.

Conclusions

The clinical and cellular phenotype of the current case of AR IL-17RC deficiency supports a previous report on this rare disorder. Our newly established evaluation system will be useful for the diagnosis of AR IL-17RC deficiency, providing accurate validation of unknown IL17RC variants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

CMC:

Chronic mucocutaneous candidiasis

AD:

Autosomal dominant

AR:

Autosomal recessive

IL:

Interleukin

Th:

T helper

Tfh:

T follicular helper

IEI:

Inborn errors of immunity

NGS :

Next generation sequencing

WT:

Wild-type

SEFIR:

Similar expression to fibroblast growth factor genes and IL-17R

pLOF:

Predicted to be loss-of-function

References

  1. Kirkpatrick CH, Hill HR. Chronic mucocutaneous candidiasis. Pediatr Infect Dis J. 2001;20(2):197–206. https://doi.org/10.1097/00006454-200102000-00017.

    Article  CAS  PubMed  Google Scholar 

  2. Puel A, Cypowyj S, Maródi L, Abel L, Picard C, Casanova JL. Inborn errors of human IL-17 immunity underlie chronic mucocutaneous candidiasis. Curr Opin Allergy Clin Immunol. 2012;12(6):616–22. https://doi.org/10.1097/ACI.0b013e328358cc0b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Puel A, Picard C, Cypowyj S, Lilic D, Abel L, Casanova JL. Inborn errors of mucocutaneous immunity to Candida albicans in humans: a role for IL-17 cytokines? Curr Opin Immunol. 2010;22(4):467–74. https://doi.org/10.1016/j.coi.2010.06.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Puel A. Human inborn errors of immunity underlying superficial or invasive candidiasis. Hum Genet. 2020;139(6–7):1011–22. https://doi.org/10.1007/s00439-020-02141-7.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Okada S, Puel A, Casanova JL, Kobayashi M. Chronic mucocutaneous candidiasis disease associated with inborn errors of IL-17 immunity. Clin Transl Immunol. 2016;5(12):e114. https://doi.org/10.1038/cti.2016.71.

    Article  CAS  Google Scholar 

  6. De Beaucoudtey L, Puel A, Filipe-Santos O, Cobat A, Ghandil P, Chrabieh M, et al. Mutations in STAT3 and IL12RB1 impair the development of human IL-17-producing T cells. J Exp Med. 2008;205(7):1543–50. https://doi.org/10.1084/jem.20080321.

    Article  CAS  Google Scholar 

  7. Ma CS, Chew GYJ, Simpson N, Priyadarshi A, Wong M, Grimbacher B, et al. Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3. J Exp Med. 2008;205(7):1551–7. https://doi.org/10.1084/jem.20080218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Milner JD, Brenchley JM, Laurence A, Freeman AF, Hill BJ, Elias KM, et al. Impaired TH17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature. 2008;452(7188):773–6. https://doi.org/10.1038/nature06764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chandesris MO, Melki I, Natividad A, Puel A, Fieschi C, Yun L, et al. Autosomal dominant STAT3 deficiency and hyper-IgE syndrome: molecular, cellular, and clinical features from a french national survey. Medicine (United States). 2012;91(4):1–19. https://doi.org/10.1097/MD.0b013e31825f95b9.

    Article  CAS  Google Scholar 

  10. Béziat V, Tavernier SJ, Chen YH, Ma CS, Materna M, Laurence A, et al. Dominant-negative mutations in human IL6ST underlie hyper-IgE syndrome. J Exp Med. 2020;217(6). https://doi.org/10.1084/jem.20191804.

  11. Béziat V, Li J, Lin JX, Ma CS, Li P, Bousfiha A, et al. A recessive form of hyper-IgE syndrome by disruption of ZNF341-dependent STAT3 transcription and activity. Sci Immunol. 2018;3(24). https://doi.org/10.1126/SCIIMMUNOL.AAT4956.

  12. Frey-Jakobs S, Hartberger JM, Fliegauf M, Bossen C, Wehmeyer ML, Neubauer JC, et al. ZNF341 controls STAT3 expression and thereby immunocompetence. Sci Immunol. 2018;3(24):1–7. https://doi.org/10.1126/sciimmunol.aat4941.

    Article  Google Scholar 

  13. Okada S, Asano T, Moriya K, Boisson-Dupuis S, Kobayashi M, Casanova JL, et al. Human STAT1 gain-of-function heterozygous mutations: chronic mucocutaneous candidiasis and type I interferonopathy. J Clin Immunol. 2020;40(8):1065–81. https://doi.org/10.1007/s10875-020-00847-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu L, Okada S, Kong XF, Kreins AY, Cypowyj S, Abhyankar A, et al. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med. 2011;208(18):1635–48. https://doi.org/10.1084/jem.20110958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Depner M, Fuchs S, Raabe J, Frede N, Glocker C, Doffinger R, et al. The extended clinical phenotype of 26 patients with chronic mucocutaneous candidiasis due to gain-of-function mutations in STAT1. J Clin Immunol. 2016;36(1):73–84. https://doi.org/10.1007/s10875-015-0214-9.

    Article  CAS  PubMed  Google Scholar 

  16. Toubiana J, Okada S, Hiller J, Oleastro M, Gomez ML, Becerra JCA, et al. Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. Blood. 2016;127(25):3154–64. https://doi.org/10.1182/blood-2015-11-679902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mizoguchi Y, Okada S. Inborn errors of STAT1 immunity. Curr Opin Immunol. 2021;72:59–64. https://doi.org/10.1016/j.coi.2021.02.009.

    Article  CAS  PubMed  Google Scholar 

  18. Li J, Ritelli M, Ma CS, Rao G, Habib T, Corvilain E, et al. Chronic mucocutaneous candidiasis and connective tissue disorder in humans with impaired JNK1-dependent responses to IL-17A/F and TGF-β. Sci Immunol. 2019;4(41):139–48. https://doi.org/10.1126/sciimmunol.aax7965.

    Article  CAS  Google Scholar 

  19. De Beaucoudrey L, Samarina A, Bustamante J, Cobat A, Boisson-Dupuis S, Feinberg J, et al. Revisiting human IL-12Rβ1 deficiency: a survey of 141 patients from 30 countries. Medicine (Baltimore). 2010;89(6):381–402. https://doi.org/10.1097/MD.0b013e3181fdd832.

    Article  CAS  PubMed  Google Scholar 

  20. Philippot Q, Ogishi M, Bohlen J, Puchan J, Arias AA, Nguyen T, et al. Human IL-23 is essential for IFN-γ-dependent immunity to mycobacteria. Sci Immunol. 2023;8(80):eabq5204. https://doi.org/10.1126/sciimmunol.abq5204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ouederni M, Sanal O, Ikincioǧullari A, Tezcan I, Dogu F, Sologuren I, et al. Clinical features of candidiasis in patients with inherited interleukin 12 receptor β1 deficiency. Clin Infect Dis. 2014;58(2):204–13. https://doi.org/10.1093/cid/cit722.

    Article  CAS  PubMed  Google Scholar 

  22. Glocker EO, Hennigs A, Nabavi M, Schäffer AA, Woellner C, Salzer U, et al. A Homozygous CARD9 mutation in a family with susceptibility to fungal infections. N Engl J Med. 2009;361(18):1727–35. https://doi.org/10.1056/nejmoa0810719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lanternier F, Pathan S, Vincent QB, Liu L, Cypowyj S, Prando C, et al. Deep dermatophytosis and inherited CARD9 deficiency. N Engl J Med. 2013;369(18):1704–14. https://doi.org/10.1056/NEJMoa1208487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Corvilain E, Casanova JL, Puel A. Inherited CARD9 deficiency: invasive disease caused by ascomycete fungi in previously healthy children and adults. J Clin Immunol. 2018;38(6):656–93. https://doi.org/10.1007/s10875-018-0539-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Okada S, Markle JG, Deenick EK, Mele F, Averbuch D, Lagos M, et al. Immunodeficiencies. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations. Science. 2015;349(6248):606–13. https://doi.org/10.1126/science.aaa4282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li J, Vinh DC, Casanova JL, Puel A. Inborn errors of immunity underlying fungal diseases in otherwise healthy individuals. Curr Opin Microbiol. 2017;40:46–57. https://doi.org/10.1016/J.MIB.2017.10.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Puel A, Cypowyj S, Bustamante J, Wright JF, Liu L, Lim HK, et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science. 2011;332(6025):65–8. https://doi.org/10.1126/science.1200439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Boisson B, Wang C, Pedergnana V, Wu L, Cypowyj S, Rybojad M, et al. An ACT1 mutation selectively abolishes interleukin-17 responses in humans with chronic mucocutaneous candidiasis. Immunity. 2013;39(4):676–86. https://doi.org/10.1016/j.immuni.2013.09.002.

    Article  CAS  PubMed  Google Scholar 

  29. Lévy R, Okada S, Béziat V, Moriya K, Liu C, Chai LYA, et al. Genetic, immunological, and clinical features of patients with bacterial and fungal infections due to inherited IL-17RA deficiency. Proc Natl Acad Sci USA. 2016;113(51):E8277–85. https://doi.org/10.1073/pnas.1618300114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ling Y, Cypowyj S, Aytekin C, Galicchio M, Camcioglu Y, Nepesov S, et al. Inherited IL-17RC deficiency in patients with chronic mucocutaneous candidiasis. J Exp Med. 2015;212(5):619–31. https://doi.org/10.1084/jem.20141065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Marujo F, Pelham SJ, Freixo J, Cordeiro AI, Martins C, Casanova JL, et al. A novel TRAF3IP2 mutation causing chronic mucocutaneous candidiasis. J Clin Immunol. 2021;41(6):1376–9. https://doi.org/10.1007/s10875-021-01026-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shafer S, Yao Y, Comrie W, Cook S, Zhang Y, Yesil G, et al. Two patients with chronic mucocutaneous candidiasis caused by TRAF3IP2 deficiency. J Allergy Clin Immunol. 2021;148(1):256–61.e2. https://doi.org/10.1016/j.jaci.2020.12.629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bhattad S, Dinakar C, Pinnamaraju H, Ganapathy A, Mannan A. Chronic mucocutaneous candidiasis in an adolescent boy due to a novel mutation in TRAF3IP2. J Clin Immunol. 2019;39(6):596–9. https://doi.org/10.1007/s10875-019-00664-x.

    Article  PubMed  Google Scholar 

  34. Li J, Casanova JL, Puel A. Mucocutaneous IL-17 immunity in mice and humans: host defense vs. excessive inflammation. Mucosal Immunol. 2018;11(3):581–9. https://doi.org/10.1038/mi.2017.97.

    Article  CAS  PubMed  Google Scholar 

  35. Gaffen SL. Structure and signalling in the IL-17 receptor family. Nat Rev Immunol. 2009;9(8):556–67. https://doi.org/10.1038/nri2586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li X, Bechara R, Zhao J, McGeachy MJ, Gaffen SL. IL-17 receptor–based signaling and implications for disease. Nat Immunol. 2019;20:1594–602. https://doi.org/10.1038/s41590-019-0514-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Monaco G, Lee B, Xu W, Mustafah S, Hwang YY, Carré C, et al. RNA-Seq signatures normalized by mRNA abundance allow absolute deconvolution of human immune cell types. Cell Rep. 2019;26(6):1627–1640.e7. https://doi.org/10.1016/j.celrep.2019.01.041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Iwakura Y, Ishigame H, Saijo S, Nakae S. Functional specialization of interleukin-17 family members. Immunity. 2011;34(2):149–62. https://doi.org/10.1016/j.immuni.2011.02.012.

    Article  CAS  PubMed  Google Scholar 

  39. Fujiki R, Ikeda M, Yoshida A, Akiko M, Yao Y, Nishimura M, et al. Assessing the accuracy of variant detection in cost-effective gene panel testing by next-generation sequencing. J Mol Diagn. 2018;20(5):572–82. https://doi.org/10.1016/j.jmoldx.2018.04.004.

    Article  CAS  PubMed  Google Scholar 

  40. Naito Y, Hino K, Bono H, Ui-Tei K. CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics. 2015;31(7):1120–3. https://doi.org/10.1093/BIOINFORMATICS/BTU743.

    Article  CAS  PubMed  Google Scholar 

  41. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 2013;8(11):2281–308. https://doi.org/10.1038/nprot.2013.143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ho AW, Shen F, Conti HR, Patel N, Childs EE, Peterson AC, et al. IL-17RC is required for immune signaling via an extended SEF/IL-17R signaling domain in the cytoplasmic tail. J Immunol. 2010;185(2):1063–70. https://doi.org/10.4049/jimmunol.0903739.

    Article  CAS  PubMed  Google Scholar 

  43. Aujnarain A, Dadi H, Mandola A. Chronic mucocutaneous candidiasis associated with a novel frameshift mutation in IL-17 receptor alpha. LymphoSign J. 2019;6(2):68–74. https://doi.org/10.14785/lymphosign-2019-0007.

    Article  Google Scholar 

  44. Frede N, Rojas-Restrepo J, Garcia C, de Oteyza A, Buchta M, Hübscher K, Gámez-Díaz L, et al. Genetic analysis of a cohort of 275 patients with hyper-IgE syndromes and/or chronic mucocutaneous candidiasis. J Clin Immunol. 2021;41(8):1804–38. https://doi.org/10.1007/s10875-021-01086-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kılıç M, Özcan MH, Taşkın E, Şen A. A family with interleukin-17 receptor A deficiency: a case report and review of the literature. Turk J Pediatr. 2023;65(1):135–43. https://doi.org/10.24953/turkjped.2022.40.

    Article  PubMed  Google Scholar 

  46. Rapaport F, Boisson B, Gregor A, Béziat V, Boisson-Dupuis S, Bustamante J, et al. Negative selection on human genes underlying inborn errors depends on disease outcome and both the mode and mechanism of inheritance. Proc Natl Acad Sci USA. 2021;118(3):1–9. https://doi.org/10.1073/pnas.2001248118.

    Article  CAS  Google Scholar 

  47. Itan Y, Shang L, Boisson B, Patin E, Bolze A, Moncada-Vélez M, et al. The human gene damage index as a gene-level approach to prioritizing exome variants. Proc Natl Acad Sci USA. 2015;112(44):13615–20. https://doi.org/10.1073/pnas.1518646112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Su Y, Huang J, Zhao X, Lu H, Wang W, Yang XO, et al. Interleukin-17 receptor D constitutes an alternative receptor for interleukin-17A important in psoriasis-like skin inflammation. Sci Immunol. 2019;4(36):1–16. https://doi.org/10.1126/sciimmunol.aau9657.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the patient and her family for their sincere efforts in cooperating with this study. We also thank Menno van Zelm and Hirokazu Kanegane for help in the breakpoint analysis of the mechanism of the duplication variant and Masaki Takazawa for technical assistance. The sequence analysis and the single cell sorting were supported by the Analysis Center of Life Science, Natural Science Center for Basic Research and Development, Hiroshima University.

Funding

SO is supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI (grant numbers: 19H03620, 22H03041, 18KK0228, and 22KK0113) and the Japan Agency for Medical Research and Development (AMED) (grant number: JP23ek0109623, JP22ek0109480). MT is supported by MEXT/JSPS KAKENHI (grant numbers: 22K15921) JLC is supported by the National Institutes of Health (grant numbers: R01AI127564). SGT and CSM are supported by Investigator Grants awarded by the National Health and Medical Research Council of Australia and project grants from the Allergy & Immunology Foundation of Australia, and the Job Research Foundation. AP is supported by the Integrative Biology of Emerging Infectious Diseases Laboratoire d’Excellence (ANR-10-LABX-62-IBEID), the French National Research Agency (ANR) (grant no. GENCMCD-ANR-11-BSV3-005-01, no. HGDIFD-ANR-14-CE15-0006-01, no. EURO-CMC-ANR-14-RARE-0005-02), and the National Institute of Allergy and Infectious Diseases of the National Institutes of Health (grant no. U01AI109697 and no. R01AI127564).

Author information

Authors and Affiliations

Authors

Contributions

SO designed and supervised the study. KN wrote the manuscript with support from TA, JLC, AP, SGT, and SO. TS, KI, MT, YI, YM, SK, SH, and YL contributed to sample preparation and provision of clinical information. KN, MT, and TN carried out the experiments. CSM designed and supervised experiments and analyzing data. FS, JH, and OO analyzed the data. All authors contributed to manuscript preparation, read, and approved the final manuscript.

Corresponding author

Correspondence to Satoshi Okada.

Ethics declarations

Ethics Approval

This study was approved by the Ethics Committee/Internal Review Board of Hiroshima University. All experiments were carried out with adherence to the Declaration of Helsinki.

Consent to Participate

Written informed consent was obtained from the patient’s parent.

Consent for Publication

Consent to submission of the case report to the journal was obtained from the patient’s parent.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(AI 578 kb)

ESM 2

(AI 472 kb)

ESM 3

(AI 455 kb)

ESM 4

(AI 438 kb)

ESM 5

(AI 387 kb)

ESM 6

(DOCX 27 kb)

ESM 7

(XLSX 9.57 kb)

ESM 8

(XLSX 10.7 kb)

ESM 9

(XLSX 11.2 kb)

ESM 10

(XLSX 11.3 kb)

ESM 11

(XLSX 9.95 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noma, K., Tsumura, M., Nguyen, T. et al. Isolated Chronic Mucocutaneous Candidiasis due to a Novel Duplication Variant of IL17RC. J Clin Immunol 44, 18 (2024). https://doi.org/10.1007/s10875-023-01601-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10875-023-01601-9

Keywords

Navigation