Skip to main content

Advertisement

Log in

Atypical Presentation of Severe Fungal Necrotizing Fasciitis in a Patient with X-Linked Agammaglobulinemia

  • Original Article
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

X-linked agammaglobulinemia is a rare primary immunodeficiency due to a BTK mutation. The patients are characteristically deficient in peripheral B cells and serum immunoglobulins. While they are susceptible to infections caused by bacteria, enteroviruses, and parasites, fungal infections are uncommon in XLA patients. Here, we report a boy of Malay ethnicity who suffered from recurrent upper respiratory tract infections and severe progressive necrotizing fasciitis caused by Saksenaea erythrospora. Immunological tests showed a B cell deficiency and hypogammaglobulinemia. Whole-exome sequencing identified a dinucleotide deletion (c.1580_1581del) in BTK, confirmed by Sanger sequencing and predicted to be disease causing by in silico functional prediction tools (Varsome and MutationTaster2) but was absent in the gnomAD database. This mutation resulted in a frameshift and premature termination (p.C527fs), which disrupted the protein structure. The mother was heterozygous at the mutation site, confirming her carrier status. Flow cytometric analysis of monocyte BTK expression showed it to be absent in the patient and bimodal in the mother. This study describes a novel BTK mutation in a defined hotspot and an atypical fungal phenotype in XLA. Further studies are required to understand the pathogenesis of fungal infection in XLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data and material are available upon request.

Code Availability

Not applicable.

References

  1. Vetrie D, Vorechovsky I, Sideras P, Holland J, Davies A, Flinter F, et al. The gene involved in X-linked agammaglobulinemia is a member of the src family of protein-tyrosine kinases. Nature. 1993;361:226–33.

    Article  CAS  PubMed  Google Scholar 

  2. Plebani A, Soresina A, Rondelli R, Amato GM, Azzari C, Cardinale F, et al. Clinical, immunological, and molecular analysis in a large cohort of patients with X-linked agammaglobulinemia: an Italian multicenter study. Clin Immunol. 2002;104:221–30.

    Article  CAS  PubMed  Google Scholar 

  3. Conley ME, Rohrer J, Rapalus L, Boylin EC, Minegishi Y. Defects in early B-cell development: comparing the consequences of abnormalities in pre-BCR signaling in the human and the mouse. Immunol Rev. 2000;178:75–90.

    Article  CAS  PubMed  Google Scholar 

  4. Futatani T, Watanabe C, Baba Y, Tsukada S, Ochs HD. Bruton’s tyrosine kinase is present in normal platelets and its absence identifies patients with X-linked agammaglobulinaemia and carrier females. Br J Haematol. 2001;114:141–9.

    Article  CAS  PubMed  Google Scholar 

  5. Winkelstein JA, Marino MC, Lederman HM, Jones SM, Sullivan K, Burks AW, et al. X-Linked agammaglobulinemia. Medicine. 2006;85:193–202.

    Article  PubMed  Google Scholar 

  6. Bearden D, Collett M, Quan PL, Costa-Carvalho BT, Sullivan KE. Enteroviruses in X-linked agammaglobulinemia: update on epidemiology and therapy. J Allergy Clin Immunol Pract. 2016;4:1059–65.

    Article  PubMed  Google Scholar 

  7. Lougaris V, Soresina A, Baronio M, Montin D, Martino S, Signa S, et al. Long-term follow-up of 168 patients with X-linked agammaglobulinemia reveals increased morbidity and mortality. J Allergy Clin Immunol. 2020;146:429–37.

    Article  CAS  PubMed  Google Scholar 

  8. Pac MM, Bernatowska EA, Kierkuś J, Ryżko JP, Cielecka-Kuszyk J, Jackowska T, et al. Gastrointestinal disorders next to respiratory infections as leading symptoms of X-linked agammaglobulinemia in children – 34-year experience of a single center. Arch Med Sci. 2017;13:412–7.

    Article  CAS  PubMed  Google Scholar 

  9. Macura AB, Macura-Biegun A, Pawlik B. Susceptibility to fungal infections of nails in patients with primary antibody deficiency. Comp Immunol Microbiol Infect Dis. 2003;26:223–32.

    Article  PubMed  Google Scholar 

  10. Nishi K, Kawai T, Kubota M, Ishiguro A, Onodera M. X-linked agammaglobulinemia complicated with pulmonary aspergillosis. Pediatr Int. 2018;60:90–2.

    Article  PubMed  Google Scholar 

  11. Chear CT, Nallusamy R, Canna SW, Chan KC, Baharin MF, Hishamshah M, et al. A novel de novo NLRC4 mutation reinforces the likely pathogenicity of specific LRR domain mutation. Clin Immunol. 2020;211:108328.

    Article  CAS  PubMed  Google Scholar 

  12. Kopanos C, Tsiolkas V, Kouris A, Chapple CE, Albarca Aguilera M, Meyer R, et al. VarSome: the human genomic variant search engine. Bioinformatics. 2019;35:1978–80.

    Article  CAS  PubMed  Google Scholar 

  13. Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014;11:361–2.

    Article  CAS  PubMed  Google Scholar 

  14. Chear CT, Ripen AM, Mohamed SAS, Dhaliwal JS. A novel BTK gene mutation creates a de-novo splice site in an X-linked agammaglobulinemia patient. Gene. 2015;560:245–8.

    Article  CAS  PubMed  Google Scholar 

  15. White TJ, Bruns T, Lee S, Taylor J. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. PCR Protocols: A Guide to Methods and Applications. New York: New York: Academic Press; 1990. p. 315–22.

    Google Scholar 

  16. Antonarakis SE, Cooper DN. 6 - Human Genomic Variants and Inherited Disease: Molecular Mechanisms and Clinical Consequences. Emery and Rimoin’s Principles and Practice of Medical Genetics and Genomics. 7th ed. Boston: Boston: Academic Press; 2019. p. 125–200.

    Google Scholar 

  17. Sehn JK. Chapter 9 - Insertions and Deletions (Indels). In: Clinical Genomics. Cambridge: Academic Press; 2015. p. 129–50.

    Chapter  Google Scholar 

  18. Moschese V, Orlandi P, Plebani A, Arvanitidis K, Fiorini M, Speletas M, et al. X-chromosome inactivation and mutation pattern in the Bruton’ s tyrosine kinase gene in patients with X-linked agammaglobulinemia. Mol Med. 2000;6:104–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Conley ME, Fitch-Hilgenberg ME, Cleveland JL, Parolini O, Rohrer J. Screening of genomic DNA to identify mutations in the gene for Bruton’s tyrosine kinase. Hum Mol Genet. 1994;3:1751–6.

    Article  CAS  PubMed  Google Scholar 

  20. Ohta Y, Haire RN, Litman RT, Fu SM, Nelson RP, Kratz J, et al. Genomic organization and structure of Bruton agammaglobulinemia tyrosine kinase: localization of mutations associated with varied clinical presentations and course in X chromosome-linked agammaglobulinemia. Proc Natl Acad Sci. 1994;91:9062–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Joseph RE, Kleino I, Wales TE, Xie Q, Fulton DB, Engen JR, et al. Activation loop dynamics determine the different catalytic efficiencies of B cell- and T cell-specific Tec kinases. Sci Signal. 2013;6:ra76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Mao C, Zhou M, Uckun FM. Crystal structure of Bruton’s tyrosine kinase domain suggests a novel pathway for activation and provides insights into the molecular basis of X-linked agammaglobulinemia. J Biol Chem. 2001;276:41435–43.

    Article  CAS  PubMed  Google Scholar 

  23. Wang Q, Vogan EM, Nocka LM, Rosen CE, Zorn JA, Harrison SC, et al. Autoinhibition of Bruton’s tyrosine kinase (Btk) and activation by soluble inositol hexakisphosphate. eLife. 2015;4:e06074.

    Article  PubMed Central  Google Scholar 

  24. Tangye SG, Al-Herz W, Bousfiha A, Chatila T, Cunningham-Rundles C, Etzioni A, et al. Human inborn errors of immunity: 2019 update on the classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol. 2020;40:24–64.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Eades CP, Armstrong-James DPH. Invasive fungal infections in the immunocompromised host: mechanistic insights in an era of changing immunotherapeutics. Med Mycol. 2019;57:S307–17.

    Article  CAS  PubMed  Google Scholar 

  26. Lanternier F, Cypowyj S, Picard C, Bustamante J, Lortholary O, Casanova J-L, et al. Primary immunodeficiencies underlying fungal infections. Curr Opin Pediatr. 2013;25:736–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Templeton SP, Rivera A, Hube B, Jacobsen ID. Editorial: immunity to human fungal pathogens: mechanisms of host recognition, protection, pathology, and fungal interference. Front Immunol. 2018;9:2337.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Mirsafian H, Ripen AM, Leong W-M, Chear CT, Mohamad SB, Merican AF. Transcriptome profiling of monocytes from XLA patients revealed the innate immune function dysregulation due to the BTK gene expression deficiency. Sci Rep. 2017;7:6836.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Goodridge HS, Underhill DM, Touret N. Mechanisms of fc receptor and Dectin-1 activation for phagocytosis: mechanisms of Fc receptor and Dectin-1 activation for phagocytosis. Traffic. 2012;13:1062–71.

    Article  CAS  PubMed  Google Scholar 

  30. Weerasinghe H, Traven A. Immunometabolism in fungal infections: the need to eat to compete. Curr Opin Microbiol. 2020;58:32–40.

    Article  CAS  PubMed  Google Scholar 

  31. Weber ANR, Bittner Z, Liu X, Dang T-M, Radsak MP, Brunner C. Bruton’s tyrosine kinase: an emerging key player in innate immunity. Front Immunol. 2017;8:1454.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Chamilos G, Lionakis MS, Kontoyiannis DP. Call for action: invasive fungal infections associated with ibrutinib and other small molecule kinase inhibitors targeting immune signaling pathways. Clin Infect Dis. 2018;66:140–8.

    Article  CAS  PubMed  Google Scholar 

  33. Ghez D, Calleja A, Protin C, Baron M, Ledoux M-P, Damaj G, et al. Early-onset invasive aspergillosis and other fungal infections in patients treated with ibrutinib. Blood. 2018;131:1955–9.

    Article  CAS  PubMed  Google Scholar 

  34. Varughese T, Taur Y, Cohen N, Palomba ML, Seo SK, Hohl TM, et al. Serious infections in patients receiving ibrutinib for treatment of lymphoid cancer. Clin Infect Dis. 2018;67:687–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. El-Sayed ZA, Abramova I, Aldave JC, Al-Herz W, Bezrodnik L, Boukari R, et al. X-linked agammaglobulinemia (XLA): phenotype, diagnosis, and therapeutic challenges around the world. World Allergy Organ J. 2019;12:100018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fiedler K, Sindrilaru A, Terszowski G, Kokai E, Feyerabend TB, Bullinger L, et al. Neutrophil development and function critically depend on Bruton tyrosine kinase in a mouse model of X-linked agammaglobulinemia. Blood. 2011;117:1329–39.

    Article  CAS  PubMed  Google Scholar 

  37. Urban CF, Nett JE. Neutrophil extracellular traps in fungal infection. Semin Cell Dev Biol. 2019;89:47–57.

    Article  CAS  PubMed  Google Scholar 

  38. Blez D, Blaize M, Soussain C, Boissonnas A, Meghraoui-Kheddar A, Menezes N, et al. Ibrutinib induces multiple functional defects in the neutrophil response against Aspergillus fumigatus. Haematologica. 2020;105:478–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stadler N, Hasibeder A, Lopez PA, Teschner D, Desuki A, Kriege O, et al. The Bruton tyrosine kinase inhibitor ibrutinib abrogates triggering receptor on myeloid cells 1-mediated neutrophil activation. Haematologica. 2017;102:e191–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. de Oliveira MA, dos Santos Dantas PH, Figueira Marques Silva-Sales M, Sales-Campos H. The role of the triggering receptor expressed on myeloid cells-1 (TREM-1) in non-bacterial infections. Crit Rev Microbiol. 2020;46:237–52.

    Article  Google Scholar 

  41. Schröder A, Gerin A, Firth GB, Hoffmann KS, Grieve A, Oetzmann von Sochaczewski C. A systematic review of necrotising fasciitis in children from its first description in 1930 to 2018. BMC Infect Dis. 2019;19:317.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Goldstein EJC, Anaya DA, Dellinger EP. Necrotizing soft-tissue infection: diagnosis and management. Clin Infect Dis. 2007;44:705–10.

  43. Alvarez E, Garcia-Hermoso D, Sutton DA, Cano JF, Stchigel AM, Hoinard D, et al. Molecular phylogeny and proposal of two new species of the emerging pathogenic fungus Saksenaea. J Clin Microbiol. 2010;48:4410–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Relloso S, Romano V, Landaburu MF, Herrera F, Smayevsky J, Veciño C, et al. Saksenaea erythrospora infection following a serious sailing accident. J Med Microbiol. 2014;63:317–21.

    Article  PubMed  Google Scholar 

  45. Hospenthal DR, Chung KK, Lairet K, Thompson EH, Guarro J, Renz EM, et al. Saksenaea erythrospora infection following combat trauma. J Clin Microbiol. 2011;49:3707–9.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mukherjee B, Kundu D. Necrotizing fungal infection due to Saksenaea erythrospora: a case report and review of literature. Indian J Ophthalmol. 2018;66:1513–6.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tendolkar U, van Diepeningen A, Joshi A, Koomen J, Bradoo R, Baveja S, et al. Rhinosinusitis caused by Saksenaea erythrospora in an immunocompetent patient in India: a first report. JMM Case Rep. 2015;2:1–4.

    Article  Google Scholar 

  48. Chander J, Singla N, Kaur M, Punia RS, Attri A, Alastruey-Izquierdo A, et al. Saksenaea erythrospora, an emerging mucoralean fungus causing severe necrotizing skin and soft tissue infections – a study from a tertiary care hospital in north India. Infect Dis Ther. 2017;49:170–7.

    Article  Google Scholar 

  49. Labuda R, Bernreiter A, Hochenauer D, Schüller C, Kubátová A, Strauss J, et al. Saksenaea dorisiae sp. nov., a new opportunistic pathogenic fungus from Europe. Int J Microbiol. 2019;2019:1–11.

    Article  CAS  Google Scholar 

  50. Futatani T, Miyawaki T, Tsukada S, Hashimoto S, Kunikata T, Arai S, et al. Deficient expression of Bruton’s tyrosine kinase in monocytes from X-linked agammaglobulinemia as evaluated by a flow cytometric analysis and its clinical application to carrier detection. Blood. 1998;91:595–602.

    CAS  PubMed  Google Scholar 

  51. Chear CT, Gill HK, Ramly NH, Dhaliwal JS, Bujang N, Ripen AM, et al. A novel Bruton’s tyrosine kinase gene (BTK) invariant splice site mutation in a Malaysian family with X-linked agammaglobulinemia. Asian Pac J Allergy Immunol. 2013;31:320–4.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Director General of Health Malaysia for his permission to publish this article. We thank all the clinicians who have been involved in the patient’s management. Also, we gratefully acknowledge Koay BT and Chiow MY for helpful discussions, and Gill HK for language editing.

Funding

This project was supported by the Ministry of Health, Malaysia, Grant NMRR-16-892-31023.

Author information

Authors and Affiliations

Authors

Contributions

C.T.C. performed experiments, analyzed results, and drafted manuscript; R.N. and K.W.C. managed and treated the patient, provided a clinical summary, and revised manuscript; R.M.T. performed and analyzed fungal identification tests and drafted manuscript; M.F.B. and S.B.M. involved in data interpretation and revised manuscript; S.N.H.S.Y. performed the experiment; P.B.K. involved in data interpretation; A.M.R. initiated and designed the study, analyzed results, and revised manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Adiratna Mat Ripen.

Ethics declarations

Ethics Approval

This study was approved by the Medical Research Ethics Committee, Ministry of Health, Malaysia [KKM/NIHSEC/P16-837].

Consent to Participate

Informed consent was obtained from the study subjects prior to sampling.

Consent for Publication

Informed consent was obtained from the study subjects prior to publication.

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chear, C.T., Nallusamy, R., Chan, K.C. et al. Atypical Presentation of Severe Fungal Necrotizing Fasciitis in a Patient with X-Linked Agammaglobulinemia. J Clin Immunol 41, 1178–1186 (2021). https://doi.org/10.1007/s10875-021-01017-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-021-01017-3

Keywords

Navigation