Skip to main content

Advertisement

Log in

Impaired IL-12- and IL-23-Mediated Immunity Due to IL-12Rβ1 Deficiency in Iranian Patients with Mendelian Susceptibility to Mycobacterial Disease

  • Original Article
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Purpose

Inborn errors of IFN-γ-mediated immunity underlie Mendelian Susceptibility to Mycobacterial Disease (MSMD), which is characterized by an increased susceptibility to severe and recurrent infections caused by weakly virulent mycobacteria, such as Bacillus Calmette–Guérin (BCG) vaccines and environmental, nontuberculous mycobacteria (NTM).

Methods

In this study, we investigated four patients from four unrelated consanguineous families from Isfahan, Iran, with disseminated BCG disease. We evaluated the patients’ whole blood cell response to IL-12 and IFN-γ, IL-12Rβ1 expression on T cell blasts, and sequenced candidate genes.

Results

We report four patients from Isfahan, Iran, ranging from 3 months to 26 years old, with impaired IL-12 signaling. All patients suffered from BCG disease. One of them presented mycobacterial osteomyelitis. By Sanger sequencing, we identified three different types of homozygous mutations in IL12RB1. Expression of IL-12Rβ1 was completely abolished in the four patients with IL12RB1 mutations.

Conclusions

IL-12Rβ1 deficiency was found in the four MSMD Iranian families tested. It is the first report of an Iranian case with S321* mutant IL-12Rβ1 protein. Mycobacterial osteomyelitis is another type of location of BCG infection in an IL-12Rβ1-deficient patient, notified for the first time in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Casanova J-L. Mendelian susceptibility to mycobacterial infection in man. Swiss Med Wkly. 2001;131(31–32):445–54.

    CAS  PubMed  Google Scholar 

  2. Flynn JL, Chan J. Immunology of tuberculosis. Annu Rev Immunol. 2001;19(1):93–129.

    Article  CAS  Google Scholar 

  3. Feinberg J, et al. Bacillus Calmette Guérin triggers the IL-12/IFN-γ axis by an IRAK-4-and NEMO-dependent, non-cognate interaction between monocytes, NK, and T lymphocytes. Eur J Immunol. 2004;34(11):3276–84.

    Article  CAS  Google Scholar 

  4. Lee W-I, et al. Immune defects in active mycobacterial diseases in patients with primary immunodeficiency diseases (PIDs). J Formos Med Assoc. 2011;110(12):750–8.

    Article  CAS  Google Scholar 

  5. Bustamante J, et al. Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-γ immunity. Semin Immunol, 2014;26(6):454–70.

    Article  CAS  Google Scholar 

  6. Casanova J-L, Abel L. Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol. 2002;20(1):581–620.

    Article  CAS  Google Scholar 

  7. Fieschi C, et al. A novel form of complete IL-12/IL-23 receptor β1 deficiency with cell surface-expressed nonfunctional receptors. Blood. 2004;104(7):2095–101.

    Article  CAS  Google Scholar 

  8. Bustamante J, et al. A novel X-linked recessive form of Mendelian susceptibility to mycobaterial disease. J Med Genet. 2007;44(2):e65–5.

    Article  Google Scholar 

  9. De Beaucoudrey L, et al. Revisiting human IL-12Rβ1 deficiency: a survey of 141 patients from 30 countries. Medicine. 2010;86(6):381–402.

    Article  Google Scholar 

  10. Hoeve MA, et al. IL-12 receptor deficiency revisited: IL-23-mediated signaling is also impaired in human genetic IL-12 receptor β1 deficiency. Eur J Immunol. 2003;33(12):3393–7.

    Article  CAS  Google Scholar 

  11. Oppmann B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity. 2000;13:715–25.

    Article  CAS  Google Scholar 

  12. Parham C, et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J Immunol. 2002;168:5699–708.

    Article  CAS  Google Scholar 

  13. Dorman SE, et al. Clinical features of dominant and recessive interferon γ receptor 1 deficiencies. Lancet. 2004;364(9451):2113–21.

    Article  CAS  Google Scholar 

  14. Dizaj MA, et al. Susceptibility to mycobacterial disease due to mutations in IL-12Rβ1 in three Iranian patients. Immunogenetics. 2018;70(6):373–9.

    Article  Google Scholar 

  15. Boisson-Dupuis S, et al. IL-12Rβ1 deficiency in two of fifty children with severe tuberculosis from Iran, Morocco, and Turkey. PLoS One. 2011;6(4):e18524.

    Article  CAS  Google Scholar 

  16. Sarrafzadeh SA, et al. Case report Mendelian susceptibility to mycobacterial disease due to IL-12Rβ1 deficiency in three Iranian children. Iran J Public Health. 2016;45:370–5.

    PubMed  PubMed Central  Google Scholar 

  17. Parvaneh N, et al. Visceral leishmaniasis in two patients with IL-12p40 and IL-12Rβ1 deficiencies. Pediatr Blood Cancer. 2017;64(6):e26362.

    Article  Google Scholar 

  18. Rosain J, et al. A variety of Alu-mediated copy number variations can underlie IL-12Rβ1 deficiency. J Clin Immunol. 2018:38(5):617–627.

    Article  CAS  Google Scholar 

  19. Tabarsi P, et al. Lethal tuberculosis in a previously healthy adult with IL-12 receptor deficiency. J Clin Immunol. 2011;31(4):537–9.

    Article  Google Scholar 

  20. Germann A, et al. Temperature fluctuations during deep temperature cryopreservation reduce PBMC recovery, viability and T-cell function. Cryobiology. 2013;67(2):193–200.

    Article  CAS  Google Scholar 

  21. Fieschi C, et al. Low penetrance, broad resistance, and favorable outcome of interleukin 12 receptor ␤ 1 deficiency: medical and immunological implications. J Exp Med. 2003;197(4):527–535.

    Article  CAS  Google Scholar 

  22. Cleary AM, et al. Impaired accumulation and function of memory CD4 T cells in human IL-12 receptor β1 deficiency. J Immunol. 2003;170(1):597–603.

    Article  CAS  Google Scholar 

  23. Lee PP, et al. Severe mycobacterial infections in two pairs of Chinese siblings with interleukin-12 receptor β1 deficiency. Eur J Pediatr. 2008;167(2):231–2.

    Article  CAS  Google Scholar 

  24. Pedraza-Sanchez S, et al. Bacille Calmette–Guérin infection and disease with fatal outcome associated with a point mutation in the interleukin-12/interleukin-23 receptor beta-1 chain in two Mexican families. Int J Infect Dis. 2010;14:e256–60.

    Article  Google Scholar 

  25. Pedraza S, et al. Clinical disease caused by Klebsiella in 2 unrelated patients with interleukin 12 receptor β1 deficiency. Pediatrics. 2010;126(4):e971–6.

    Article  Google Scholar 

  26. Zahid MF, et al. Recurrent salmonellosis in a child with complete IL-12Rβ1 deficiency. J Immunodefic Disord. 2014;31.

  27. Khamassi I, et al. Salmonella enteriditis inducing cutaneous leucocytoclasic vasculitis: an unusual complication in a patient with an interleukine-12 receptor beta-1 deficiency. Tunis Med. 2015;93(5):328–9.

    PubMed  Google Scholar 

  28. Caragol I, et al. Clinical tuberculosis in 2 of 3 siblings with interleukin-12 receptor β1 deficiency. Clin Infect Dis. 2003;37(2):302–6.

    Article  CAS  Google Scholar 

  29. Ouederni M, et al. Clinical features of candidiasis in patients with inherited interleukin 12 receptor β1 deficiency. Clin Infect Dis. 2014;58(2):204–13.

    Article  CAS  Google Scholar 

  30. Arend SM, et al. Multifocal osteomyelitis caused by nontuberculous mycobacteria in patients with a genetic defect of the interferon-γ receptor. Neth J Med. 2001;59(3):140–51.

    Article  CAS  Google Scholar 

  31. Glosli H, et al. Infections due to various atypical mycobacteria in a Norwegian multiplex family with dominant interferon-γ receptor deficiency. Clin Infect Dis. 2008;46(3):e23–7.

    Article  CAS  Google Scholar 

  32. Rose DM, et al. A novel mutation in IFN-[gamma] receptor 1 presenting as multisystem Mycobacterium intracellulare infection. J Allergy Clin Immunol. 2014;133(2):591–2.

    Article  CAS  Google Scholar 

  33. Sasaki Y, et al. Genetic basis of patients with bacille Calmette-Guerin osteomyelitis in Japan: identification of dominant partial interferon-γ receptor 1 deficiency as a predominant type. J Infect Dis. 2002;185(5):706–9.

    Article  CAS  Google Scholar 

  34. Hirata O, et al. Heterozygosity for the Y701C STAT1 mutation in a multiplex kindred with multifocal osteomyelitis. Haematologica. 2013;98(10):1641–9.

    Article  CAS  Google Scholar 

  35. Tsumura M, et al. Dominant-negative STAT1 SH2 domain mutations in unrelated patients with mendelian susceptibility to mycobacterial disease. Hum Mutat. 2012;33(9):1377–87.

    Article  CAS  Google Scholar 

  36. Chapgier A, et al. Novel STAT1 alleles in otherwise healthy patients with mycobacterial disease. PLoS Genet. 2006;2(8):e131.

    Article  Google Scholar 

  37. Ueki M, et al. A heterozygous dominant-negative mutation in the coiled-coil domain of STAT1 is the cause of autosomal-dominant Mendelian susceptibility to mycobacterial diseases. Clin Immunol. 2017;174:24–31.

    Article  CAS  Google Scholar 

  38. Kagawa R, et al. Alanine-scanning mutagenesis of human signal transducer and activator of transcription 1 to estimate loss-or gain-of-function variants. J Allergy Clin Immunol. 2017;140(1):232–41.

    Article  CAS  Google Scholar 

  39. Allende LM, et al. A point mutation in a domain of gamma interferon receptor 1 provokes severe immunodeficiency. Clin Diagn Lab Immunol. 2001;8(1):133–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kong X-F, et al. A novel form of cell type-specific partial IFN-γR1 deficiency caused by a germ line mutation of the IFNGR1 initiation codon. Hum Mol Genet. 2009;19(3):434–44.

    Article  Google Scholar 

  41. Remiszewski P, et al. Disseminated Mycobacterium avium infection in a 20-year-old female with partial recessive IFNγR1 deficiency. Respiration. 2006;73(3):375–8.

    Article  Google Scholar 

  42. Sologuren I, et al. Partial recessive IFN-γR1 deficiency: genetic, immunological and clinical features of 14 patients from 11 kindreds. Hum Mol Genet. 2011;20(8):1509–23.

    Article  CAS  Google Scholar 

  43. Bax H, et al. Interferon alpha treatment of patients with impaired interferon gamma signaling. J Clin Immunol. 2013;33(5):991–1001.

    Article  CAS  Google Scholar 

  44. Jouanguy E, et al. Interferon-γ–receptor deficiency in an infant with fatal bacille Calmette–Guérin infection. N Engl J Med. 1996;335(26):1956–62.

    Article  CAS  Google Scholar 

  45. Cecilia Martínez-Morales M et al. Disseminated infection by M. tuberculosis complex in patient with IFN-γ receptor 1 complete deficiency. Rev Alerg Mex. 2017;64(4):499–504.

  46. Newport MJ, et al. A mutation in the interferon-γ–receptor gene and susceptibility to mycobacterial infection. N Engl J Med. 1996;335(26):1941–9.

    Article  CAS  Google Scholar 

  47. Reuter U, et al. Correction of complete interferon-γ receptor 1 deficiency by bone marrow transplantation. Blood. 2002;100(12):4234–5.

    Article  CAS  Google Scholar 

  48. Dorman SE, et al. Viral infections in interferon-γ receptor deficiency. J Pediatr. 1999;135(5):640–3.

    Article  CAS  Google Scholar 

  49. Koscielniak E, et al. Disseminated Mycobacterium peregrinum infection in a child with complete interferon-gamma receptor-1 deficiency. Pediatr Infect Dis J. 2003;22(4):378–80.

    PubMed  Google Scholar 

  50. Lee W-I, et al. Chinese patients with defective IL-12/23-interferon-γ circuit in Taiwan: partial dominant interferon-γ receptor 1 mutation presenting as cutaneous granuloma and IL-12 receptor β1 mutation as pneumatocele. J Clin Immunol. 2009;29(2):238.

    Article  CAS  Google Scholar 

  51. Marazzi MG, et al. Disseminated Mycobacterium scrofulaceum infection in a child with interferon-γ receptor 1 deficiency. Int J Infect Dis. 2010;14(2):e167–70.

    Article  Google Scholar 

  52. Noordzij JG, et al. Two patients with complete defects in interferon gamma receptor-dependent signaling. J Clin Immunol. 2007;27(5):490–6.

    Article  Google Scholar 

  53. Roesler J, et al. Listeria monocytogenes and recurrent mycobacterial infections in a child with complete interferon-γ-receptor (IFNγR1) deficiency: mutational analysis and evaluation of therapeutic options. Exp Hematol. 1999;27(9):1368–74.

    Article  CAS  Google Scholar 

  54. Vinh DC, et al. Refractory disseminated coccidioidomycosis and mycobacteriosis in interferon-γ receptor 1 deficiency. Clin Infect Dis. 2009;49(6):e62–5.

    Article  CAS  Google Scholar 

  55. Nabhani S, et al. Deregulation of Fas ligand expression as a novel cause of autoimmune lymphoproliferative syndrome like disease. Haematologica. 2015;100(9):1189–98.

    Article  CAS  Google Scholar 

  56. Hatipoglu N, et al. Inherited IL-12Rβ1 deficiency in a child with BCG adenitis and oral candidiasis: a case report. Pediatrics. 2017;140:e20161668.

    Article  Google Scholar 

  57. Göktürk B, et al. Infectious diseases, autoimmunity and midline defect in a patient with a novel bi-allelic mutation in IL12RB1 gene. Turk J Pediatr. 2016;58(3):331–6.

    Article  Google Scholar 

  58. Dhalla F, et al. Chronic mucocutaneous candidiasis: characterization of a family with STAT-1 gain-of-function and development of an ex-vivo assay for Th17 deficiency of diagnostic utility. Clin Exp Immunol. 2016;184:216–27.

    Article  CAS  Google Scholar 

  59. Cárdenes M, et al. Oesophageal squamous cell carcinoma in a young adult with IL-12Rβ1 deficiency. J Med Genet. 2010;47(9):635–7.

    Article  Google Scholar 

  60. Jirapongsananuruk O, et al. Cryptococcal osteomyelitis in a child with a novel compound mutation of the IL12RB1 gene. Asian Pac J Allergy Immunol. 2012;30(1):79.

    CAS  PubMed  Google Scholar 

  61. Vinh DC. Insights into human antifungal immunity from primary immunodeficiencies. Lancet Infect Dis. 2011;11(10):780–92.

    Article  CAS  Google Scholar 

  62. Sasaki Y, et al. Genetic basis of patients with bacille Calmette-Guérin osteomyelitis in Japan: identification of dominant partial interferon-γ receptor 1 deficiency as a predominant type. J Infect Dis. 2002;185:706–9.

    Article  CAS  Google Scholar 

  63. Ueki M, et al. A heterozygous dominant-negative mutation in the coiled-coil domain of STAT1 is the cause of autosomal-dominant Mendelian susceptibility to mycobacterial diseases. Clin Immunol. 2017;174:24–31.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the patients and their families for their collaboration and their participation in the present study. Finally, we would like to thank Dr. Hamid Zarkesh for her great help and invaluable advice.

Financial Support

This study was supported by Isfahan University of Medical Sciences. The Laboratory of Human Genetics of Infectious Diseases is supported by the National Institute of Allergy and Infectious Diseases (grant number 5R01AI089970); the National Center for Research Resources and the National Center for Advancing Sciences of the National Institutes of Health (grant number 8UL1TR000043); The Rockefeller University; the St. Giles Foundation; the Institut National de la Santé et de la Recherche Médicale (INSERM); Paris Descartes University; Laboratoire d’Excellence Integrative Biology of Emerging Infectious Diseases (ANR-10-LABX-62-IBEID); the French National Research Agency under the “Investments for the future” (grant number ANR-10-IAHU-01), ANR-GENMSMD (ANR-16-CE17–0005-01 for JB); and the German Academic Exchange Service (DAAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roya Sherkat.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants

Informed consent for participation in this study was obtained in accordance with local regulations, with approval from the IRB. The experiments described here were performed in Iran and in France, in accordance with local regulations, and with the approval of the IRB for Isfahan Immunodeficiency Research Center (IIRC), Iran, and for Necker Hospital for Sick Children, France.

Informed Consent

Written informed consent was obtained from the patients.

Electronic Supplementary Material

ESM 1

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nekooie-Marnany, N., Deswarte, C., Ostadi, V. et al. Impaired IL-12- and IL-23-Mediated Immunity Due to IL-12Rβ1 Deficiency in Iranian Patients with Mendelian Susceptibility to Mycobacterial Disease. J Clin Immunol 38, 787–793 (2018). https://doi.org/10.1007/s10875-018-0548-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-018-0548-1

Keywords

Navigation