Skip to main content

Advertisement

Log in

A Multiplex Kindred with Hennekam Syndrome due to Homozygosity for a CCBE1 Mutation that does not Prevent Protein Expression

  • Original Article
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Collagen and calcium-binding EGF domain-containing protein 1 (CCBE1) bi-allelic mutations have been associated with syndromes of widespread congenital lymphatic dysplasia, including Hennekam Syndrome (HS). HS is characterized by lymphedema, lymphangiectasia, and intellectual disability. CCBE1 encodes a putative extracellular matrix protein but the HS-causing mutations have not been studied biochemically. We report two HS siblings, born to consanguineous parents of Turkish ancestry, whose clinical phenotype also includes protein losing enteropathy, painful relapsing chylous ascites, and hypogammaglobulinemia. We identified by whole exome and Sanger sequencing the homozygous CCBE1 C174Y mutation in both siblings. This mutation had been previously reported in another HS kindred from the Netherlands. In over-expression studies, we found increased intracellular expression of all forms (monomers, dimers, trimers) of the CCBE1 C174Y mutant protein, by Western blot, despite mutant mRNA levels similar to wild-type (WT). In addition, we detected increased secretion of the mutant CCBE1 protein by ELISA. We further found the mutant and WT proteins to be evenly distributed in the cytoplasm, by immunofluorescence and confocal microscopy. Finally, we found a strong decrease of lymphatic vessels, with a corresponding diminished expression of CCBE1, by immunohistochemistry of the patients’ intestinal biopsies. In contrast, mucosal blood vessels and muscularis mucosae showed normal CCBE1 staining. Our findings show that the mutant CCBE1 C174Y protein is not loss-of-function by loss-of-expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hennekam RC, Geerdink RA, Hamel BC, Hennekam FA, Kraus P, Rammeloo JA, et al. Autosomal recessive intestinal lymphangiectasia and lymphedema, with facial anomalies and mental retardation. Am J Med Genet. 1989;34(4):593–600.

    Article  PubMed  CAS  Google Scholar 

  2. Al-Gazali LI, Hertecant J, Ahmed R, Khan NA, Padmanabhan R. Further delineation of Hennekam syndrome. Clin Dysmorphol. 2003;12(4):227–32.

    Article  PubMed  CAS  Google Scholar 

  3. Bellini C, Mazzella M, Arioni C, Campisi C, Taddei G, Toma P, et al. Hennekam syndrome presenting as nonimmune hydrops fetalis, congenital chylothorax, and congenital pulmonary lymphangiectasia. Am J Med Genet A. 2003;120A(1):92–6.

    Article  PubMed  Google Scholar 

  4. Connell F, Kalidas K, Ostergaard P, Brice G, Homfray T, Roberts L, et al. Linkage and sequence analysis indicate that CCBE1 is mutated in recessively inherited generalised lymphatic dysplasia. Hum Genet. 2010;127(2):231–41.

    Article  PubMed  Google Scholar 

  5. Cormier-Daire V, Lyonnet S, Lehnert A, Martin D, Salomon R, Patey N, et al. Craniosynostosis and kidney malformation in a case of Hennekam syndrome. Am J Med Genet. 1995;57(1):66–8.

    Article  PubMed  CAS  Google Scholar 

  6. Forzano F, Faravelli F, Loy A, Di Rocco M. Severe lymphedema, intestinal lymphangiectasia, seizures and mild mental retardation: further case of Hennekam syndrome with a severe phenotype. Am J Med Genet. 2002;111(1):68–70.

    Article  PubMed  CAS  Google Scholar 

  7. Gabrielli O, Catassi C, Carlucci A, Coppa GV, Giorgi P. Intestinal lymphangiectasia, lymphedema, mental retardation, and typical face: confirmation of the Hennekam syndrome. Am J Med Genet. 1991;40(2):244–7.

    Article  PubMed  CAS  Google Scholar 

  8. Scarcella A, De Lucia A, Pasquariello MB, Gambardella P. Early death in two sisters with Hennekam syndrome. Am J Med Genet. 2000;93(3):181–3.

    Article  PubMed  CAS  Google Scholar 

  9. Van Balkom ID, Alders M, Allanson J, Bellini C, Frank U, De Jong G, et al. Lymphedema-lymphangiectasia-mental retardation (Hennekam) syndrome: a review. Am J Med Genet. 2002;112(4):412–21.

    Article  PubMed  Google Scholar 

  10. Yasunaga M, Yamanaka C, Mayumi M, Momoi T, Mikawa H. Protein-losing gastroenteropathy with facial anomaly and growth retardation: a mild case of Hennekam syndrome. Am J Med Genet. 1993;45(4):477–80.

    Article  PubMed  CAS  Google Scholar 

  11. Alders M, Hogan BM, Gjini E, Salehi F, Al-Gazali L, Hennekam EA, et al. Mutations in CCBE1 cause generalized lymph vessel dysplasia in humans. Nat Genet. 2009;41(12):1272–4.

    Article  PubMed  CAS  Google Scholar 

  12. Alders M, Mendola A, Ades L, Al Gazali L, Bellini C, Dallapiccola B, et al. Evaluation of clinical manifestations in patients with severe lymphedema with and without CCBE1 mutations. Mol Syndromol. 2013;4(3):107–13.

    PubMed  CAS  PubMed Central  Google Scholar 

  13. Alders M, Al-Gazali L, Cordeiro I, Dallapiccola B, Garavelli L, Tuysuz B, et al. Hennekam syndrome can be caused by FAT4 mutations and be allelic to Van Maldergem syndrome. Hum Genet. 2014;133(9):1161–7.

    Article  PubMed  CAS  Google Scholar 

  14. Bos FL, Caunt M, Peterson-Maduro J, Planas-Paz L, Kowalski J, Karpanen T, et al. CCBE1 is essential for mammalian lymphatic vascular development and enhances the lymphangiogenic effect of vascular endothelial growth factor-C in vivo. Circ Res. 2011;109(5):486–91.

    Article  PubMed  CAS  Google Scholar 

  15. Jeltsch M, Jha SK, Tvorogov D, Anisimov A, Leppanen VM, Holopainen T, et al. CCBE1 enhances lymphangiogenesis via A disintegrin and metalloprotease with thrombospondin motifs-3-mediated vascular endothelial growth factor-C activation. Circulation. 2014;129(19):1962–71.

    Article  PubMed  CAS  Google Scholar 

  16. Hogan BM, Bos FL, Bussmann J, Witte M, Chi NC, Duckers HJ, et al. Ccbe1 is required for embryonic lymphangiogenesis and venous sprouting. Nat Genet. 2009;41(4):396–8.

    Article  PubMed  CAS  Google Scholar 

  17. Shah S, Conlin LK, Gomez L, Aagenaes O, Eiklid K, Knisely AS, et al. CCBE1 mutation in two siblings, one manifesting lymphedema-cholestasis syndrome, and the other, fetal hydrops. PLoS One. 2013;8(9):e75770.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Mendola A, Schlogel MJ, Ghalamkarpour A, Irrthum A, Nguyen HL, Fastre E, et al. Mutations in the VEGFR3 signaling pathway explain 36% of familial lymphedema. Mol Syndromol. 2013;4(6):257–66.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Le Guen L, Karpanen T, Schulte D, Harris NC, Koltowska K, Roukens G, et al. Ccbe1 regulates Vegfc-mediated induction of Vegfr3 signaling during embryonic lymphangiogenesis. Development. 2014;141(6):1239–49.

    Article  PubMed  CAS  Google Scholar 

  20. Weijts BG, van Impel A, Schulte-Merker S, de Bruin A. Atypical E2fs control lymphangiogenesis through transcriptional regulation of Ccbe1 and Flt4. PLoS One. 2013;8(9):e73693.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Ingle SB, Hinge Ingle CR. Primary intestinal lymphangiectasia: minireview. World J Clin Cases. 2014;2(10):528–33.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Vignes S, Bellanger J. Primary intestinal lymphangiectasia (Waldmann’s disease). Orphanet J Rare Dis. 2008;3:5.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Bolze A, Byun M, McDonald D, Morgan NV, Abhyankar A, Premkumar L, et al. Whole-exome-sequencing-based discovery of human FADD deficiency. Am J Hum Genet. 2010;87(6):873–81.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Byun M, Abhyankar A, Lelarge V, Plancoulaine S, Palanduz A, Telhan L, et al. Whole-exome sequencing-based discovery of STIM1 deficiency in a child with fatal classic Kaposi sarcoma. J Exp Med. 2010;207(11):2307–12.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. UniProt C. UniProt: a hub for protein information. Nucleic Acids Res. 2015;43(Database issue):D204–12.

    Google Scholar 

  26. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46(3):310–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4(7):1073–81.

    Article  PubMed  CAS  Google Scholar 

  29. Itan Y, Shang L, Boisson B, Patin E, Bolze A, Moncada-Velez M, et al. The human gene damage index as a gene-level approach to prioritizing exome variants. Proc Natl Acad Sci USA. 2015;112(44):13615–20.

  30. Conley ME, Casanova JL. Discovery of single-gene inborn errors of immunity by next generation sequencing. Curr Opin Immunol. 2014;30:17–23.

    Article  PubMed  CAS  Google Scholar 

  31. Casanova JL, Conley ME, Seligman SJ, Abel L, Notarangelo LD. Guidelines for genetic studies in single patients: lessons from primary immunodeficiencies. J Exp Med. 2014;211(11):2137–49.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Roukens MG, Peterson-Maduro J, Padberg Y, Jeltsch M, Leppanen VM, Bos FL, et al. Functional dissection of the CCBE1 protein: a crucial requirement for the collagen repeat domain. Circ Res. 2015;116(10):1660–9.

    Article  PubMed  CAS  Google Scholar 

  33. Connell FC, Kalidas K, Ostergaard P, Brice G, Murday V, Mortimer PS, et al. CCBE1 mutations can cause a mild, atypical form of generalized lymphatic dysplasia but are not a common cause of non-immune hydrops fetalis. Clin Genet. 2012;81(2):191–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We warmly thank the patients for their participation. This work was supported by the National Center for Research Resources and the National Center for Advancing Sciences (NCATS) of the National Institutes of Health (NIH) (grant 8UL1TR000043), the Rockefeller University, INSERM, Paris Descartes University, and the St. Giles Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn C. Jackson.

Ethics declarations

Conflict of Interest

The authors declare they have no competing financial interests. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jackson, C.C., Best, L., Lorenzo, L. et al. A Multiplex Kindred with Hennekam Syndrome due to Homozygosity for a CCBE1 Mutation that does not Prevent Protein Expression. J Clin Immunol 36, 19–27 (2016). https://doi.org/10.1007/s10875-015-0225-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-015-0225-6

Keywords

Navigation