Skip to main content

Advertisement

Log in

Clinical Ramifications of the MHC Family Fc Receptor FcRn

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Introduction

Knowledge that antibodies of the IgG isotype have remarkably extended persistence in circulation and are able to pass through cell barriers has substantial implications. While it is well established that so-called neonatal Fc receptor, FcRn, acts throughout life to confer these unusual properties, its ramifications on clinical medicine and therapeutic uses are not broadly appreciated.

Scope

Here we discuss basic principles and gaps in understanding of FcRn, including its management of IgG antibodies and along with albumin, its impact on use and design of antibody-based therapeutics, and its genetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Waldmann TA, Strober W. Metabolism of immunoglobulins. Prog Allergy. 1969;13:1–110.

    CAS  PubMed  Google Scholar 

  2. Dickinson BL, Badizadegan K, Wu Z, Ahouse JC, Zhu X, Simister NE, et al. Bidirectional FcRn-dependent IgG transport in a polarized human intestinal epithelial cell line. J Clin Invest. 1999;104:903–11.

    Article  CAS  PubMed  Google Scholar 

  3. Masuda A, Yoshida M, Shiomi H, Morita Y, Kutsumi H, Inokuchi H, et al. Role of Fc receptors as a therapeutic target. Inflamm Allergy Drug Targets. 2009;8:80–6.

    Article  CAS  PubMed  Google Scholar 

  4. Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol. 2007;7:715–25.

    Article  CAS  PubMed  Google Scholar 

  5. Ward ES, Ober RJ. Chapter 4: multitasking by exploitation of intracellular transport functions the many faces of FcRn. Adv Immunol. 2009;103:77–115.

    Article  CAS  PubMed  Google Scholar 

  6. Raghavan M, Bjorkman PJ. Fc receptors and their interactions with immunoglobulins. Annu Rev Cell Dev Biol. 1996;12:181–220.

    Article  CAS  PubMed  Google Scholar 

  7. Simister NE, Ahouse JC, Res Immunol. The structure and evolution of FcRn. Res Immunol. 1996;147:333–7. discussion 53.

    Article  CAS  PubMed  Google Scholar 

  8. Burmeister WP, Gastinel LN, Simister NE, Blum ML, Bjorkman PJ. Crystal structure at 2.2 A resolution of the MHC-related neonatal Fc receptor. Nature. 1994;372:336–43.

    Article  CAS  PubMed  Google Scholar 

  9. Burmeister WP, Huber AH, Bjorkman PJ. Crystal structure of the complex of rat neonatal Fc receptor with Fc. Nature. 1994;372:379–83.

    Article  CAS  PubMed  Google Scholar 

  10. West Jr AP, Bjorkman PJ. Crystal structure and immunoglobulin G binding properties of the human major histocompatibility complex-related Fc receptor(,). Biochemistry. 2000;39:9698–708.

    Article  CAS  PubMed  Google Scholar 

  11. Martin WL, West Jr AP, Gan L, Bjorkman PJ. Crystal structure at 2.8 A of an FcRn/heterodimeric Fc complex: mechanism of pH-dependent binding. Mol Cell. 2001;7:867–77.

    Article  CAS  PubMed  Google Scholar 

  12. Vaughn DE, Bjorkman PJ. Structural basis of pH-dependent antibody binding by the neonatal Fc receptor. Structure. 1998;6:63–73.

    Article  CAS  PubMed  Google Scholar 

  13. McCarthy KM, Yoong Y, Simister NE. Bidirectional transcytosis of IgG by the rat neonatal Fc receptor expressed in a rat kidney cell line: a system to study protein transport across epithelia. J Cell Sci. 2000;113(Pt 7):1277–85.

    CAS  PubMed  Google Scholar 

  14. Wu Z, Simister NE. Tryptophan- and dileucine-based endocytosis signals in the neonatal Fc receptor. J Biol Chem. 2001;276:5240–7.

    Article  CAS  PubMed  Google Scholar 

  15. Newton EE, Wu Z, Simister NE. Characterization of basolateral-targeting signals in the neonatal Fc receptor. J Cell Sci. 2005;118:2461–9.

    Article  CAS  PubMed  Google Scholar 

  16. Brambell FW, Hemmings WA, Morris IG. A theoretical model of gamma-globulin catabolism. Nature. 1964;203:1352–4.

    Article  CAS  PubMed  Google Scholar 

  17. Junghans RP, Anderson CL. The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor. Proc Natl Acad Sci U S A. 1996;93:5512–6.

    Article  CAS  PubMed  Google Scholar 

  18. Ober RJ, Martinez C, Lai X, Zhou J, Ward ES. Exocytosis of IgG as mediated by the receptor, FcRn: an analysis at the single-molecule level. Proc Natl Acad Sci U S A. 2004;101:11076–81.

    Article  CAS  PubMed  Google Scholar 

  19. Ward ES, Martinez C, Vaccaro C, Zhou J, Tang Q, Ober RJ. From sorting endosomes to exocytosis: association of Rab4 and Rab11 GTPases with the Fc receptor, FcRn, during recycling. Mol Biol Cell. 2005;16:2028–38.

    Article  CAS  PubMed  Google Scholar 

  20. Gan Z, Ram S, Vaccaro C, Ober RJ, Ward ES. Analyses of the recycling receptor, FcRn, in live cells reveal novel pathways for lysosomal delivery. Traffic. 2009;10:600–14.

    Article  CAS  PubMed  Google Scholar 

  21. Chaudhury C, Mehnaz S, Robinson JM, Hayton WL, Pearl DK, Roopenian DC, et al. The major histocompatibility complex-related Fc receptor for IgG (FcRn) binds albumin and prolongs its lifespan. J Exp Med. 2003;197:315–22.

    Article  CAS  PubMed  Google Scholar 

  22. Anderson CL, Chaudhury C, Kim J, Bronson CL, Wani MA, Mohanty S. Perspective—FcRn transports albumin: relevance to immunology and medicine. Trends Immunol. 2006;27:343–8.

    Article  CAS  PubMed  Google Scholar 

  23. Kim J, Bronson CL, Hayton WL, Radmacher MD, Roopenian DC, Robinson JM, et al. Albumin turnover: FcRn-mediated recycling saves as much albumin from degradation as the liver produces. Am J Physiol Gastrointest Liver Physiol. 2006;290:G352–60.

    Article  CAS  PubMed  Google Scholar 

  24. Kim J, Hayton WL, Robinson JM, Anderson CL. Kinetics of FcRn-mediated recycling of IgG and albumin in human: pathophysiology and therapeutic implications using a simplified mechanism-based model. Clin Immunol. 2006;122(2):146–55.

    Article  PubMed  Google Scholar 

  25. Andersen JT, Sandlie I. The versatile MHC class I-related FcRn protects IgG and albumin from degradation: implications for development of new diagnostics and therapeutics. Drug Metab Pharmacokinet. 2009;24:318–32.

    Article  CAS  PubMed  Google Scholar 

  26. Peters Jr T. Serum albumin. Adv Protein Chem. 1985;37:161–245.

    Article  CAS  PubMed  Google Scholar 

  27. Chaudhury C, Brooks CL, Carter DC, Robinson JM, Anderson CL. Albumin binding to FcRn: distinct from the FcRn-IgG interaction. Biochemistry. 2006;45:4983–90.

    Article  CAS  PubMed  Google Scholar 

  28. Andersen JT, Dee Qian J, Sandlie I. The conserved histidine 166 residue of the human neonatal Fc receptor heavy chain is critical for the pH-dependent binding to albumin. Eur J Immunol. 2006;36:3044–51.

    Article  CAS  PubMed  Google Scholar 

  29. Ramalingam TS, Detmer SA, Martin WL, Bjorkman PJ. IgG transcytosis and recycling by FcRn expressed in MDCK cells reveals ligand-induced redistribution. EMBO J. 2002;21:590–601.

    Article  CAS  PubMed  Google Scholar 

  30. Tzaban S, Massol RH, Yen E, Hamman W, Frank SR, Lapierre LA, et al. The recycling and transcytotic pathways for IgG transport by FcRn are distinct and display an inherent polarity. J Cell Biol. 2009;185:673–84.

    Article  CAS  PubMed  Google Scholar 

  31. Yoshida M, Claypool SM, Wagner JS, Mizoguchi E, Mizoguchi A, Roopenian DC, et al. Human neonatal Fc receptor mediates transport of IgG into luminal secretions for delivery of antigens to mucosal dendritic cells. Immunity. 2004;20:769–83.

    Article  CAS  PubMed  Google Scholar 

  32. Yoshida M, Masuda A, Kuo TT, Kobayashi K, Claypool SM, Takagawa T, et al. IgG transport across mucosal barriers by neonatal Fc receptor for IgG and mucosal immunity. Springer Semin Immunopathol. 2006;28:397–403.

    Article  CAS  PubMed  Google Scholar 

  33. Kobayashi K, Qiao SW, Yoshida M, Baker K, Lencer WI, Blumberg RS. An FcRn-dependent role for anti-flagellin immunoglobulin G in pathogenesis of colitis in mice. Gastroenterology. 2009;137:1746–56. e1.

    Article  CAS  PubMed  Google Scholar 

  34. Zhu X, Meng G, Dickinson BL, Li X, Mizoguchi E, Miao L, et al. MHC class I-related neonatal Fc receptor for IgG is functionally expressed in monocytes, intestinal macrophages, and dendritic cells. J Immunol. 2001;166:3266–76.

    CAS  PubMed  Google Scholar 

  35. Akilesh S, Christianson GJ, Roopenian DC, Shaw AS. Neonatal FcR expression in bone marrow-derived cells functions to protect serum IgG from catabolism. J Immunol. 2007;179:4580–8.

    CAS  PubMed  Google Scholar 

  36. Sarav M, Wang Y, Hack BK, Chang A, Jensen M, Bao L, et al. Renal FcRn reclaims albumin but facilitates elimination of IgG. J Am Soc Nephrol. 2009;20:1941–52.

    Article  CAS  PubMed  Google Scholar 

  37. Presta LG. Molecular engineering and design of therapeutic antibodies. Curr Opin Immunol. 2008;20:460–70.

    Article  CAS  PubMed  Google Scholar 

  38. Strohl WR. Optimization of Fc-mediated effector functions of monoclonal antibodies. Curr Opin Biotechnol. 2009;20:685–91.

    Article  CAS  PubMed  Google Scholar 

  39. Humphrey JH, Fahey JL. The metabolism of normal plasma proteins and gamma-myeloma protein in mice bearing plasma-cell tumors. J Clin Invest. 1961;40:1696–705.

    Article  CAS  PubMed  Google Scholar 

  40. Jin F, Balthasar JP. Mechanisms of intravenous immunoglobulin action in immune thrombocytopenic purpura. Hum Immunol. 2005;66:403–10.

    Article  CAS  PubMed  Google Scholar 

  41. Ober RJ, Radu CG, Ghetie V, Ward ES. Differences in promiscuity for antibody-FcRn interactions across species: implications for therapeutic antibodies. Int Immunol. 2001;13:1551–9.

    Article  CAS  PubMed  Google Scholar 

  42. Ghetie V, Ward ES. Multiple roles for the major histocompatibility complex class I-related receptor FcRn. Annu Rev Immunol. 2000;18:739–66.

    Article  CAS  PubMed  Google Scholar 

  43. Shields RL, Namenuk AK, Hong K, Meng YG, Rae J, Briggs J, et al. High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R. J Biol Chem. 2001;276:6591–604.

    Article  CAS  PubMed  Google Scholar 

  44. Zhou J, Johnson JE, Ghetie V, Ober RJ, Ward ES. Generation of mutated variants of the human form of the MHC class I-related receptor, FcRn, with increased affinity for mouse immunoglobulin G. J Mol Biol. 2003;332:901–13.

    Article  CAS  PubMed  Google Scholar 

  45. Vaccaro C, Zhou J, Ober RJ, Ward ES. Engineering the Fc region of immunoglobulin G to modulate in vivo antibody levels. Nat Biotechnol. 2005;23:1283–8.

    Article  CAS  PubMed  Google Scholar 

  46. Ghetie V, Popov S, Borvak J, Radu C, Matesoi D, Medesan C, et al. Increasing the serum persistence of an IgG fragment by random mutagenesis. Nat Biotechnol. 1997;15:637–40.

    Article  CAS  PubMed  Google Scholar 

  47. Hinton PR, Johlfs MG, Xiong JM, Hanestad K, Ong KC, Bullock C, et al. Engineered human IgG antibodies with longer serum half-lives in primates. J Biol Chem. 2004;279:6213–6.

    Article  CAS  PubMed  Google Scholar 

  48. Kamei DT, Lao BJ, Ricci MS, Deshpande R, Xu H, Tidor B, et al. Quantitative methods for developing Fc mutants with extended half-lives. Biotechnol Bioeng. 2005;92:748–60.

    Article  CAS  PubMed  Google Scholar 

  49. Dall'Acqua WF, Kiener PA, Wu H. Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn). J Biol Chem. 2006;281:23514–24.

    Article  PubMed  Google Scholar 

  50. Hinton PR, Xiong JM, Johlfs MG, Tang MT, Keller S, Tsurushita N. An engineered human IgG1 antibody with longer serum half-life. J Immunol. 2006;176:346–56.

    CAS  PubMed  Google Scholar 

  51. Petkova SB, Akilesh S, Sproule TJ, Christianson GJ, Al Khabbaz H, Brown AC, et al. Enhanced half-life of genetically engineered human IgG1 antibodies in a humanized FcRn mouse model: potential application in humorally mediated autoimmune disease. Int Immunol. 2006;18:1759–69.

    Article  CAS  PubMed  Google Scholar 

  52. Oganesyan V, Damschroder MM, Woods RM, Cook KE, Wu H, Dall'acqua WF. Structural characterization of a human Fc fragment engineered for extended serum half-life. Mol Immunol. 2009;46:1750–5.

    Article  CAS  PubMed  Google Scholar 

  53. Vaccaro C, Bawdon R, Wanjie S, Ober RJ, Ward ES. Divergent activities of an engineered antibody in murine and human systems have implications for therapeutic antibodies. Proc Natl Acad Sci U S A. 2006;103:18709–14.

    Article  CAS  PubMed  Google Scholar 

  54. Roopenian DC, Christianson GJ, Sproule TJ. Human FcRn transgenic mice for pharmacokinetic evaluation of therapeutic antibodies. Methods Mol Biol. 2010;602:93–104.

    Article  CAS  PubMed  Google Scholar 

  55. Zalevsky J, Chamberlain AK, Horton HM, Karki S, Leung IW, Sproule TJ, et al. Enhanced antibody half-life improves in vivo activity. Nat Biotechnol. 2010;28:157–9.

    Article  CAS  PubMed  Google Scholar 

  56. Wani MA, Haynes LD, Kim J, Bronson CL, Chaudhury C, Mohanty S, et al. Familial hypercatabolic hypoproteinemia caused by deficiency of the neonatal Fc receptor, FcRn, due to a mutant beta2-microglobulin gene. Proc Natl Acad Sci U S A. 2006;103:5084–9.

    Article  CAS  PubMed  Google Scholar 

  57. Wochner RD, Drews G, Strober W, Waldmann TA. Accelerated breakdown of immunoglobulin G (IgG) in myotonic dystrophy: a hereditary error of immunoglobulin catabolism. J Clin Invest. 1966;45:321–9.

    Article  CAS  PubMed  Google Scholar 

  58. Zinneman HH, Rotstein J. A study of gamma globulins in dystrophia myotonica. J Lab Clin Med. 1956;47:907–16.

    CAS  PubMed  Google Scholar 

  59. Roberts DF, Bradley WG. Immunoglobulin levels in dystrophia myotonica. J Med Genet. 1977;14:16–9.

    Article  CAS  PubMed  Google Scholar 

  60. Pan-Hammarstrom Q, Wen S, Ghanaat-Pour H, Solders G, Forsberg H, Hammarstrom L. Lack of correlation between the reduction of serum immunoglobulin concentration and the CTG repeat expansion in patients with type 1 dystrophia [correction of Dystrofia] myotonica. J Neuroimmunol. 2003;144:100–4.

    Article  CAS  PubMed  Google Scholar 

  61. Lee JE, Cooper TA. Pathogenic mechanisms of myotonic dystrophy. Biochem Soc Trans. 2009;37:1281–6.

    Article  CAS  PubMed  Google Scholar 

  62. Klesert TR, Cho DH, Clark JI, Maylie J, Adelman J, Snider L, et al. Mice deficient in Six5 develop cataracts: implications for myotonic dystrophy. Nat Genet. 2000;25:105–9.

    Article  CAS  PubMed  Google Scholar 

  63. Savkur RS, Philips AV, Cooper TA. Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat Genet. 2001;29:40–7.

    Article  CAS  PubMed  Google Scholar 

  64. Junghans RP, Ebralidze A, Tiwari B. Does (CUG)n repeat in DMPK mRNA 'paint' chromosome 19 to suppress distant genes to create the diverse phenotype of myotonic dystrophy?: a new hypothesis of long-range cis autosomal inactivation. Neurogenetics. 2001;3:59–67.

    Article  CAS  PubMed  Google Scholar 

  65. Junghans RP. Dystrophia myotonia: why focus on foci? Eur J Hum Genet. 2009;17:543–53.

    Article  CAS  PubMed  Google Scholar 

  66. Christianson GJ, Brooks W, Vekasi S, Manolfi EA, Niles J, Roopenian SL, et al. Beta 2-microglobulin-deficient mice are protected from hypergammaglobulinemia and have defective antibody responses because of increased IgG catabolism. J Immunol. 1997;159:4781–92.

    CAS  PubMed  Google Scholar 

  67. Mayer B, Doleschall M, Bender B, Bartyik J, Bosze Z, Frenyo LV, et al. Expression of the neonatal Fc receptor (FcRn) in the bovine mammary gland. J Dairy Res. 2005;72:107–12.

    Article  CAS  PubMed  Google Scholar 

  68. Zhang R, Zhao Z, Zhao Y, Kacskovics I, Eijk M, Groot N, et al. Association of FcRn heavy chain encoding gene (FCGRT) polymorphisms with IgG content in bovine colostrum. Anim Biotechnol. 2009;20:242–6.

    Article  CAS  PubMed  Google Scholar 

  69. Sachs UJ, Socher I, Braeunlich CG, Kroll H, Bein G, Santoso S. A variable number of tandem repeats polymorphism influences the transcriptional activity of the neonatal Fc receptor alpha-chain promoter. Immunology. 2006;119:83–9.

    Article  CAS  PubMed  Google Scholar 

  70. Zhou XJ, Yu L, Zhu L, Hou P, Lv JC, Yu F, et al. Association between polymorphisms in the FCGRT gene and lupus nephritis in Chinese patients. Clin Exp Rheumatol. 2009;27:609–14.

    CAS  PubMed  Google Scholar 

  71. Freiberger T, Ravcukova B, Grodecka L, Kurecova B, Jarkovsky J, Bartonkova D, et al. No association of FCRN promoter VNTR polymorphism with the rate of maternal-fetal IgG transfer. J Reprod Immunol. 2010;85:193–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH R01 DK56597 (DCR) and T31 DK07449 (VZS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derry C. Roopenian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roopenian, D.C., Sun, V.Z. Clinical Ramifications of the MHC Family Fc Receptor FcRn. J Clin Immunol 30, 790–797 (2010). https://doi.org/10.1007/s10875-010-9458-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-010-9458-6

Keywords

Navigation