Skip to main content
Log in

Enolase and Arrestin are Novel Nonmyelin Autoantigens in Multiple Sclerosis

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Introduction: Although myelin autoimmunity is known to be a major factor in the pathogenesis of multiple sclerosis (MS), the role of nonmyelin antigens is less clear. Given the complexity of this disease, it is possible that autoimmunity against nonmyelin antigens also has a pathogenic role. Autoantibodies against enolase and arrestin have previously been reported in MS patients. The T-cell response to these antigens, however, has not been established.

Methods: Thirty-five patients with MS were recruited, along with thirty-five healthy controls. T-cell proliferative responses against non-neuronal enolase, neuron-specific enolase (NSE), retinal arrestin, β-arrestin, and myelin basic protein were determined.

Results: MS patients had a greater prevalence of positive T-cell proliferative responses to NSE, retinal arrestin, and β-arrestin than healthy controls (p<0.0001). The proliferative response against NSE, retinal arrestin, and β-arrestin correlated with the response against myelin basic protein (p≤0.004). Furthermore, the proliferative response against retinal arrestin was correlated to β-arrestin (p<0.0001), whereas there was no such correlation between non-neuronal enolase and NSE (p = 0.23).

Discussion: There is accumulating evidence to suggest that the pathogenesis of MS involves more than just myelin autoimmunity/destruction. Autoimmunity against nonmyelin antigens may be a component of this myriad of immunopathological events. NSE, retinal arrestin, and β-arrestin are novel nonmyelin autoantigens that deserve further investigation in this respect. Autoimmunity against these antigens may be linked to neurodegeneration, defective remyelination, and predisposition to uveitis in multiple sclerosis. Further investigation of the role of these antigens in MS is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Ponomarenko NA, Durova OM, Vorobiev II, Belogurov AA, Telegin GB, Suchkov SV, et al.: Catalytic activity of autoantibodies toward myelin basic protein correlates with the scores on the multiple sclerosis expanded disability status scale. Immunol Lett 103(1):45–50, 2006

    Article  PubMed  CAS  Google Scholar 

  2. Raine CS: Multiple sclerosis: A pivotal role for the T cell in lesion development. Neuropathol Appl Neurobiol 17(4):265–274, 1991

    PubMed  CAS  Google Scholar 

  3. Schmidt S: Candidate autoantigens in multiple sclerosis. Mult Scler 5(3):147–160, 1999

    PubMed  CAS  Google Scholar 

  4. Banki K, Colombo E, Sia F, Halladay D, Mattson DH, Tatum AH, et al.: Oligodendrocyte-specific expression and autoantigenicity of transaldolase in multiple sclerosis. J Exp Med 180(5):1649–1663, 1994

    Article  PubMed  CAS  Google Scholar 

  5. Colombo E, Banki K, Tatum AH, Daucher J, Ferrante P, Murray RS, et al.: Comparative analysis of antibody and cell-mediated autoimmunity to transaldolase and myelin basic protein in patients with multiple sclerosis. J Clin Invest 99(6):1238–1250, 1997

    PubMed  CAS  Google Scholar 

  6. Pratesi F, Moscato S, Sabbatini A, Chimenti D, Bombardieri S, Migliorini P: Autoantibodies specific for alpha-enolase in systemic autoimmune disorders. J Rheumatol 27(1):109–115, 2000

    PubMed  CAS  Google Scholar 

  7. Gitlits VM, Toh BH, Sentry JW: Disease association, origin, and clinical relevance of autoantibodies to the glycolytic enzyme enolase. J Invest Med 49(2):138–145, 2001

    CAS  Google Scholar 

  8. Adamus G, Amundson D, Seigel GM, Machnicki M: Anti-enolase-alpha autoantibodies in cancer-associated retinopathy: Epitope mapping and cytotoxicity on retinal cells. J Autoimmun 11(6):671–677, 1998

    Article  PubMed  CAS  Google Scholar 

  9. Adamus G, Aptsiauri N, Guy J, Heckenlively J, Flannery J, Hargrave PA: The occurrence of serum autoantibodies against enolase in cancer-associated retinopathy. Clin Immunol Immunopathol 78(2):120–129, 1996

    Article  PubMed  CAS  Google Scholar 

  10. Weleber RG, Watzke RC, Shults WT, Trzupek KM, Heckenlively JR, Egan RA, et al.: Clinical and electrophysiologic characterization of paraneoplastic and autoimmune retinopathies associated with antienolase antibodies. Am J Ophthalmol 139(5):780–794, 2005

    Article  PubMed  CAS  Google Scholar 

  11. Gorczyca WA, Ejma M, Witkowska D, Misiuk-Hojlo M, Kuropatwa M, Mulak M, et al.: Retinal antigens are recognized by antibodies present in sera of patients with multiple sclerosis. Ophthalmic Res 36(2):120–123, 2004

    Article  PubMed  CAS  Google Scholar 

  12. Forooghian F, Kertes PJ, Aptsiauri N: Probable autoimmune retinopathy in a patient with multiple sclerosis. Can J Ophthalmol 38(7):593–597, 2003

    PubMed  Google Scholar 

  13. Forooghian F, Adamus G, Sproule M, Westall C, O’Connor P: Enolase autoantibodies and retinal function in multiple sclerosis patients. Graefes Arch Clin Exp Ophthalmol, 2007.

  14. Teunissen CE, Dijkstra C, Polman C: Biological markers in CSF and blood for axonal degeneration in multiple sclerosis. Lancet Neurol 4(1):32–41, 2005

    Article  PubMed  Google Scholar 

  15. Zaffaroni M: Biological indicators of the neurodegenerative phase of multiple sclerosis. Neurol Sci 24(Suppl 5):S279–S282, 2003

    Article  PubMed  Google Scholar 

  16. Zimmer DB, Cornwall EH, Landar A, Song W: The S100 protein family: History, function, and expression. Brain Res Bull 37(4):417–429, 1995

    Article  PubMed  CAS  Google Scholar 

  17. Kondo H, Iwanaga T, Nakajima T: An immunocytochemical study on the localization of S-100 protein in the retina of rats. Cell Tissue Res 231(3):527–532, 1983

    Article  PubMed  CAS  Google Scholar 

  18. Kondo H, Takahashi H, Takahashi Y: Immunohistochemical study of S-100 protein in the postnatal development of Muller cells and astrocytes in the rat retina. Cell Tissue Res 238(3):503–508, 1984

    Article  PubMed  CAS  Google Scholar 

  19. Michetti F, Massaro A, Murazio M: The nervous system-specific S-100 antigen in cerebrospinal fluid of multiple sclerosis patients. Neurosci Lett 11(2):171–175, 1979

    Article  PubMed  CAS  Google Scholar 

  20. Petzold A, Eikelenboom MJ, Gveric D, Keir G, Chapman M, Lazeron RH, et al.: Markers for different glial cell responses in multiple sclerosis: Clinical and pathological correlations. Brain 125 (Pt 7):1462–1473, 2002

    Article  PubMed  CAS  Google Scholar 

  21. Kojima K, Berger T, Lassmann H, Hinze-Selch D, Zhang Y, Gehrmann J, et al.: Experimental autoimmune panencephalitis and uveoretinitis transferred to the Lewis rat by T lymphocytes specific for the S100 beta molecule, a calcium binding protein of astroglia. J Exp Med 180(3):817–829, 1994

    Article  PubMed  CAS  Google Scholar 

  22. Kojima K, Wekerle H, Lassmann H, Berger T, Linington C: Induction of experimental autoimmune encephalomyelitis by CD4+ T cells specific for an astrocyte protein, S100 beta. J Neural Transm Suppl 49:43–51, 1997

    PubMed  CAS  Google Scholar 

  23. Broekhuyse RM, Leunissen JL, Verkley AJ: Ultrastructural localization of S-antigen in retinal structures. Curr Eye Res 4(1):73–77, 1985

    PubMed  CAS  Google Scholar 

  24. McKechnie NM, Al-Mahdawi S, Dutton G, Forrester JV: Ultrastructural localization of retinal S antigen in the human retina. Exp Eye Res 42(5):479–487, 1986

    Article  PubMed  CAS  Google Scholar 

  25. Attramadal H, Arriza JL, Aoki C, Dawson TM, Codina J, Kwatra MM, et al.: Beta-arrestin2, a novel member of the arrestin/beta-arrestin gene family. J Biol Chem 267(25):17882–17890, 1992

    PubMed  CAS  Google Scholar 

  26. Biousse V, Trichet C, Bloch-Michel E, Roullet E: Multiple sclerosis associated with uveitis in two large clinic-based series. Neurology 52(1):179–181, 1999

    PubMed  CAS  Google Scholar 

  27. Graham EM, Francis DA, Sanders MD, Rudge P: Ocular inflammatory changes in established multiple sclerosis. J Neurol Neurosurg Psychiatry 52(12):1360–1363, 1989

    Article  PubMed  CAS  Google Scholar 

  28. Wagemans MA, Breebaart AC: Association between intermediate uveitis and multiple sclerosis. Dev Ophthalmol 23:99–105, 1992

    PubMed  CAS  Google Scholar 

  29. Wacker WB, Donoso LA, Kalsow CM, Yankeelov JA, Jr, Organisciak DT: Experimental allergic uveitis. Isolation, characterization, and localization of a soluble uveitopathogenic antigen from bovine retina. J Immunol 119(6):1949–1958, 1977

    PubMed  CAS  Google Scholar 

  30. Nussenblatt RB, Kuwabara T, de Monasterio FM, Wacker WB: S-antigen uveitis in primates. A new model for human disease. Arch Ophthalmol 99(6):1090–1092, 1981

    PubMed  CAS  Google Scholar 

  31. de Kozak Y, Sakai J, Thillaye B, Faure JP: S antigen-induced experimental autoimmune uveo-retinitis in rats. Curr Eye Res 1(6):327–337, 1981

    PubMed  CAS  Google Scholar 

  32. Sudo A, Endo M, Saitoh S: Serum anti-arrestin antibody and disease activity of multiple sclerosis—a case report of 4-year-old child. No To Hattatsu 32(5):415–419, 2000

    PubMed  CAS  Google Scholar 

  33. Ohguro H, Chiba S, Igarashi Y, Matsumoto H, Akino T, Palczewski K: Beta-arrestin and arrestin are recognized by autoantibodies in sera from multiple sclerosis patients. Proc Natl Acad Sci USA 90(8):3241–3245, 1993

    Article  PubMed  CAS  Google Scholar 

  34. McDowell JH, Smith WC, Miller RL, Popp MP, Arendt A, Abdulaeva G, et al.: Sulfhydryl reactivity demonstrates different conformational states for arrestin, arrestin activated by a synthetic phosphopeptide, and constitutively active arrestin. Biochemistry 38(19):6119–6125, 1999

    Article  PubMed  CAS  Google Scholar 

  35. Winer S, Tsui H, Lau A, Song A, Li X, Cheung RK, et al.: Autoimmune islet destruction in spontaneous type 1 diabetes is not beta-cell exclusive. Nat Med 9(2):198–205, 2003

    CAS  Google Scholar 

  36. Winer S, Astsaturov I, Cheung RK, Schrade K, Gunaratnam L, Wood DD, et al.: T cells of multiple sclerosis patients target a common environmental peptide that causes encephalitis in mice. J Immunol 166(7):4751–4756, 2001

    CAS  Google Scholar 

  37. Dosch H, Cheung RK, Karges W, Pietropaolo M, Becker DJ: Persistent T cell anergy in human type 1 diabetes. J Immunol 163(12):6933–6940, 1999

    Google Scholar 

  38. McAleese SM, Dunbar B, Fothergill JE, Hinks LJ, Day IN: Complete amino acid sequence of the neurone-specific gamma isozyme of enolase (NSE) from human brain and comparison with the non-neuronal alpha form (NNE). Eur J Biochem 178(2):413–417, 1988

    Article  PubMed  CAS  Google Scholar 

  39. Kaiser E, Kuzmits R, Pregant P, Burghuber O, Worofka W: Clinical biochemistry of neuron specific enolase. Clin Chim Acta 183(1):13–31, 1989

    Article  PubMed  CAS  Google Scholar 

  40. Grigoriadis N, Ben-Hur T, Karussis D, Milonas I: Axonal damage in multiple sclerosis: A complex issue in a complex disease. Clin Neurol Neurosurg 106(3):211–217, 2004

    Article  PubMed  Google Scholar 

  41. Chitnis T, Imitola J, Khoury SJ: Therapeutic strategies to prevent neurodegeneration and promote regeneration in multiple sclerosis. Curr Drug Targets Immune Endocr Metabol Disord 5(1):11–26, 2005

    Article  PubMed  CAS  Google Scholar 

  42. Owens T: The enigma of multiple sclerosis: inflammation and neurodegeneration cause heterogeneous dysfunction and damage. Curr Opin Neurol 16(3):259–265, 2003

    Article  PubMed  Google Scholar 

  43. Deloulme JC, Helies A, Ledig M, Lucas M, Sensenbrenner M: A comparative study of the distribution of alpha- and gamma-enolase subunits in cultured rat neural cells and fibroblasts. Int J Dev Neurosci 15(2):183–194, 1997

    Article  PubMed  CAS  Google Scholar 

  44. Sensenbrenner M, Lucas M, Deloulme JC: Expression of two neuronal markers, growth-associated protein 43 and neuron-specific enolase, in rat glial cells. J Mol Med 75(9):653–663,1997

    Article  PubMed  CAS  Google Scholar 

  45. Koch M, Mostert J, Heersema D, Teelken A, De Keyser J: Plasma S100beta and NSE levels and progression in multiple sclerosis. J Neurol Sci 252(2):154–158, 2007

    Article  PubMed  CAS  Google Scholar 

  46. Adamus G, Chan CC: Experimental autoimmune uveitides: multiple antigens, diverse diseases. Int Rev Immunol 21(2–3):209–229, 2002

    Article  PubMed  CAS  Google Scholar 

  47. de Smet MD, Chan CC: Regulation of ocular inflammation–what experimental and human studies have taught us. Prog Retin Eye Res 20(6):761–797, 2001

    Article  PubMed  CAS  Google Scholar 

  48. Giordano M, D’Alfonso S, Momigliano-Richiardi P: Genetics of multiple sclerosis: linkage and association studies. Amer J Pharmacogenomics 2(1):37–58, 2002

    Article  CAS  Google Scholar 

  49. Raja SC, Jabs DA, Dunn JP, Fekrat S, Machan CH, Marsh MJ, et al.: Pars planitis: Clinical features and class II HLA associations. Ophthalmology 106(3):594–599, 1999

    Article  PubMed  CAS  Google Scholar 

  50. Tang WM, Pulido JS, Eckels DD, Han DP, Mieler WF, Pierce K: The association of HLA-DR15 and intermediate uveitis. Amer J Ophthalmol 123(1):70–75, 1997

    CAS  Google Scholar 

  51. Hirose S, Singh VK, Donoso LA, Shinohara T, Kotake S, Tanaka T, et al.: An 18-mer peptide derived from the retinal S antigen induces uveitis and pinealitis in primates. Clin Exp Immunol 77(1):106–111, 1989

    PubMed  CAS  Google Scholar 

  52. de Smet MD, Yamamoto JH, Mochizuki M, Gery I, Singh VK, Shinohara T, et al.: Cellular immune responses of patients with uveitis to retinal antigens and their fragments. Amer J Ophthalmol 110(2):135–142, 1990

    CAS  Google Scholar 

  53. Nityanand S, Singh VK, Shinohara T, Paul AK, Singh V, Agarwal PK, et al.: Cellular immune response of patients with uveitis to peptide M, a retinal S-antigen fragment. J Clin Immunol 13(5):352–358, 1993

    Article  PubMed  CAS  Google Scholar 

  54. Pette M, Fujita K, Wilkinson D, Altmann DM, Trowsdale J, Giegerich G, et al.: Myelin autoreactivity in multiple sclerosis: recognition of myelin basic protein in the context of HLA-DR2 products by T lymphocytes of multiple-sclerosis patients and healthy donors. Proc Natl Acad Sci USA 87(20):7968–7972, 1990

    Article  PubMed  CAS  Google Scholar 

  55. Wucherpfennig KW, Catz I, Hausmann S, Strominger JL, Steinman L, Warren KG: Recognition of the immunodominant myelin basic protein peptide by autoantibodies and HLA-DR2-restricted T cell clones from multiple sclerosis patients. Identity of key contact residues in the B-cell and T-cell epitopes. J Clin Invest 100(5):1114–1122, 1997

    PubMed  CAS  Google Scholar 

  56. Lefkowitz RJ, Shenoy SK: Transduction of receptor signals by beta-arrestins. Science 308(5721):512–517, 2005

    Article  PubMed  CAS  Google Scholar 

  57. Mastronardi FG, daCruz LA, Wang H, Boggs J, Moscarello MA: The amount of sonic hedgehog in multiple sclerosis white matter is decreased and cleavage to the signaling peptide is deficient. Mult Scler 9(4):362–371, 2003

    Article  PubMed  CAS  Google Scholar 

  58. Seifert T, Bauer J, Weissert R, Fazekas F, Storch MK: Differential expression of sonic hedgehog immunoreactivity during lesion evolution in autoimmune encephalomyelitis. J Neuropathol Exp Neurol 64(5):404–411, 2005

    PubMed  Google Scholar 

  59. John GR, Shankar SL, Shafit-Zagardo B, Massimi A, Lee SC, Raine CS, et al.: Multiple sclerosis: re-expression of a developmental pathway that restricts oligodendrocyte maturation. Nat Med 8(10):1115–1521, 2002

    Article  PubMed  CAS  Google Scholar 

  60. Jurynczyk M, Jurewicz A, Bielecki B, Raine CS, Selmaj K: Inhibition of Notch signaling enhances tissue repair in an animal model of multiple sclerosis. J Neuroimmunol 170(1–2):3–10, 2005

    Article  PubMed  CAS  Google Scholar 

  61. Mukherjee A, Veraksa A, Bauer A, Rosse C, Camonis J, Artavanis-Tsakonas S: Regulation of Notch signalling by non-visual beta-arrestin. Nat Cell Biol 7(12):1191–1201, 2005

    Article  PubMed  CAS  Google Scholar 

  62. Kalderon D: Hedgehog signaling: An Arrestin connection? Curr Biol 15(5):R175–178, 2005

    Article  PubMed  CAS  Google Scholar 

  63. Shenoy SK, Lefkowitz RJ: Receptor regulation: beta-arrestin moves up a notch. Nat Cell Biol 7(12):1159–1161, 2005

    Article  PubMed  CAS  Google Scholar 

  64. Parruti G, Peracchia F, Sallese M, Ambrosini G, Masini M, Rotilio D, et al.: Molecular analysis of human beta-arrestin-1: Cloning, tissue distribution, and regulation of expression. Identification of two isoforms generated by alternative splicing. J Biol Chem 268(13):9753–9761, 1993

    PubMed  CAS  Google Scholar 

  65. Giallongo A, Oliva D, Cali L, Barba G, Barbieri G, Feo S: Structure of the human gene for alpha-enolase. Eur J Biochem 190(3):567–573, 1990

    Article  PubMed  CAS  Google Scholar 

  66. Oliva D, Cali L, Feo S, Giallongo A: Complete structure of the human gene encoding neuron-specific enolase. Genomics 10(1):157–165, 1991

    Article  PubMed  CAS  Google Scholar 

  67. McMahon EJ, Bailey SL, Castenada CV, Waldner H, Miller SD: Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat Med 11(3):335–339, 2005

    Article  PubMed  CAS  Google Scholar 

  68. Klehmet J, Shive C, Guardia-Wolff R, Petersen I, Spack EG, Boehm BO, et al.: T cell epitope spreading to myelin oligodendrocyte glycoprotein in HLA-DR4 transgenic mice during experimental autoimmune encephalomyelitis. Clin Immunol 111(1):53–60, 2004

    Article  PubMed  CAS  Google Scholar 

  69. Lehmann PV, Forsthuber T, Miller A, Sercarz EE: Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature 358(6382):155–157, 1992

    Article  PubMed  CAS  Google Scholar 

  70. McRae BL, Vanderlugt CL, Dal Canto MC, Miller SD: Functional evidence for epitope spreading in the relapsing pathology of experimental autoimmune encephalomyelitis. J Exp Med 182(1):75–85, 1995

    Article  PubMed  CAS  Google Scholar 

  71. Yu M, Johnson JM, Tuohy VK: A predictable sequential determinant spreading cascade invariably accompanies progression of experimental autoimmune encephalomyelitis: A basis for peptide-specific therapy after onset of clinical disease. J Exp Med 183(4):1777–1788, 1996

    Article  PubMed  CAS  Google Scholar 

  72. de Smet MD, Bitar G, Mainigi S, Nussenblatt RB: Human S-antigen determinant recognition in uveitis. Invest Ophthalmol Vis Sci 42(13):3233–3238, 2001

    PubMed  CAS  Google Scholar 

  73. Tuohy VK, Yu M, Weinstock-Guttman B, Kinkel RP: Diversity and plasticity of self recognition during the development of multiple sclerosis. J Clin Invest 99(7):1682–1690, 1997

    Article  PubMed  CAS  Google Scholar 

  74. Mastronardi FG, Moscarello MA: Molecules affecting myelin stability: A novel hypothesis regarding the pathogenesis of multiple sclerosis. J Neurosci Res 80(3):301–308, 2005

    Article  PubMed  CAS  Google Scholar 

  75. Minagar A, Jy W, Jimenez JJ, Alexander JS: Multiple sclerosis as a vascular disease. Neurol Res 28(3):230–235, 2006

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was supported by a grant from the MS Scientific Foundation of Canada to FF and POC, a grant form the Canadian Institutes of Health Research to HMD, and grants from the National Eye Institute and the Karl Kirchgessner Foundation to WCS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzin Forooghian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forooghian, F., Cheung, R.K., Smith, W.C. et al. Enolase and Arrestin are Novel Nonmyelin Autoantigens in Multiple Sclerosis. J Clin Immunol 27, 388–396 (2007). https://doi.org/10.1007/s10875-007-9091-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-007-9091-1

KEY WORDS:

Navigation