Skip to main content
Log in

Determination of aldehydes and acetone in fog water samples via online concentration and HPLC

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Aldehydes and ketones, ubiquitous air, cloud, and fog water pollutants, are precursors to secondary organic aerosol formation and photochemical smog. Traditional aldehyde and ketone determination methods involve the addition of 2,4-dinitrophenylhydrazine (DNPH) as a derivatization agent, but many require a large sample volume or a lengthy extraction/concentration process. For fog water, where the sample size is inherently small, a DNPH derivatization method, based on U.S. EPA Method 8315A, was developed to combat this issue. In this method, a manual injection online concentration system in conjunction with HPLC was used, eliminating all liquid-liquid extraction and concentration steps and reducing the required sample volume. Hence, concentration and separation were combined in a single step. Using this injection method shortened the procedure time and also lowered the limit of detection to the nanomolar range. In this study, fourteen fog water samples, collected from October 2012 through April 2014 in Baton Rouge, LA, were analyzed for the concentration of aldehydes and ketones in order to test the feasibility of this method. Dissolved organic content (DOC), ionic concentration, and pH were measured. Formaldehyde, acetaldehyde, acrolein, butyraldehyde, benzaldehyde, and acetone were quantified. The DOC of the collected fog samples varied between 6.2 and 262.2 mgC/L. The wide range of organic content in the fog water samples corresponds to a diverse sample set, highlighted by the large variation of observed acetone concentration (under 5 nM to 1.05 mM). However, formaldehyde had a relatively stable concentration between each event (0.5 to 4.5 μM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Air monitoring data and AQI.: site monitoring data at Baton Rouge capitol site. http://airquality.deq.louisiana.gov (2014)

  • Aneja, V.P.: Organic compounds in cloud water and their deposition at a remote continental site. Air Waste 43(9), 1239–1244 (1993). doi:10.1080/1073161X.1993.10467201

    Article  Google Scholar 

  • Bakeas, E.B., Argyris, D.I., Siskos, P.A.: Carbonyl compounds in the urban environment of Athens, Greece. Chemosphere 52(5), 805–813 (2003). doi:10.1016/S0045-6535(03)00257-1

    Article  Google Scholar 

  • Brewer, R.L., Gordon, R.J., Shepard, L.S., Ellis, E.C.: Chemistry of mist and fog from the Los Angeles urban area. Atmos Environ 17(11), 2267–2270 (1983). doi:10.1016/0004-6981(83)90224-x

    Article  Google Scholar 

  • Carlier, P., Hannachi, H., Mouvier, G.: The chemistry of carbonyl compounds in the atmosphere—A review. Atmos Environ 20(11), 2079–2099 (1986). doi:10.1016/0004-6981(86)90304-5

    Article  Google Scholar 

  • Collett Jr., J.L., Daube Jr., B.C., Gunz, D., Hoffmann, M.R.: Intensive studies of Sierra Nevada cloudwater chemistry and its relationship to precursor aerosol and gas concentrations. Atmos Environ Part A 24(7), 1741–1757 (1990). doi:10.1016/0960-1686(90)90507-J

    Article  Google Scholar 

  • Collett Jr., J.L., Herckes, P., Youngster, S., Lee, T.: Processing of atmospheric organic matter by California radiation fogs. Atmos Res 87(3–4), 232–241 (2008). doi:10.1016/j.atmosres.2007.11.005

    Article  Google Scholar 

  • de Laat, A.T.J., de Gouw, J.A., Lelieveld, J., Hansel, A.: Model analysis of trace gas measurements and pollution impact during INDOEX. J Geophys Res Atmos 106(D22), 28469–28480 (2001). doi:10.1029/2000JD900821

    Article  Google Scholar 

  • Deguillaume, L., Charbouillot, T., Joly, M., Vaïtilingom, M., Parazols, M., Marinoni, A., Amato, P., Delort, A.M., Vinatier, V., Flossmann, A., Chaumerliac, N., Pichon, J.M., Houdier, S., Laj, P., Sellegri, K., Colomb, A., Brigante, M., Mailhot, G.: Classification of clouds sampled at the puy de Dôme (France) based on 10 yr of monitoring of their physicochemical properties. Atmos Chem Phys 14(3), 1485–1506 (2014). doi:10.5194/acp-14-1485-2014

    Article  Google Scholar 

  • Demoz, B.B., Collett Jr., J.L., Daube Jr., B.C.: On the Caltech active strand cloudwater collectors. Atmos Res 41(1), 47–62 (1996). doi:10.1016/0169-8095(95)00044-5

    Article  Google Scholar 

  • Ehrenhauser, F.S.: Photochemical reaction products of polycyclic aromatic hydrocarbons adsorbed at an air-water interface. Louisiana State University (2011)

  • EPA.: Integrated Risk Information System (IRIS) on Acetaldehyde (1999a)

  • EPA.: Integrated Risk Information System (IRIS) on Formaldehyde (1999b)

  • EPA: U.S. EPA Method 8315A.: Determination of carbonyl compounds by high performance liquid chromatography (HPLC) (1996) http://www.epa.gov/epawaste/hazard/testmethods/sw846/pdfs/8315a.pdf

  • Ervens, B., Turpin, B.J., Weber, R.J.: Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies. Atmos Chem Phys 11(21), 11069–11102 (2011). doi:10.5194/acp-11-11069-2011

    Article  Google Scholar 

  • Ervens, B., Wang, Y., Eagar, J., Leaitch, W.R., Macdonald, A.M., Valsaraj, K.T., Herckes, P.: Dissolved organic carbon (DOC) and select aldehydes in cloud and fog water: the role of the aqueous phase in impacting trace gas budgets. Atmos Chem Phys 13(10), 5117–5135 (2013). doi:10.5194/acp-13-5117-2013

    Article  Google Scholar 

  • Facchini, M.C., Chiavari, G., Fuzzi, S.: An improved HPLC method for carbonyl compound speciation in the atmospheric liquid phase. Chemosphere 15(6), 667–674 (1986). doi:10.1016/0045-6535(86)90032-9

    Article  Google Scholar 

  • Facchini, M.C., Lind, J., Orsi, G., Fuzzi, S.: Chemistry of carbonyl compounds in Po Valley fog water. Sci Total Environ 91, 79–86 (1990). doi:10.1016/0048-9697(90)90289-7

    Article  Google Scholar 

  • Faroon, O., Roney, N., Taylor, J., Ashizawa, A., Lumpkin, M.H., Plewak, D.J.: Acrolein environmental levels and potential for human exposure. Toxicol Ind Health 24(8), 543–564 (2008). doi:10.1177/0748233708098124

    Article  Google Scholar 

  • Faust, B.C., Allen, J.M.: Aqueous-phase photochemical formation of hydroxyl radical in authentic cloudwaters and fogwaters. Environ Sci Technol 27(6), 1221–1224 (1993). doi:10.1021/es00043a024

    Article  Google Scholar 

  • Fuzzi, S., Facchini, M.C., Orsi, G., Bonforte, G., Martinotti, W., Ziliani, G., Mazzalit, P., Rossi, P., Natale, P., Grosa, M.M., Rampado, E., Vitali, P., Raffaelli, R., Azzini, G., Grotti, S.: The NEVALPA project: A regional network for fog chemical climatology over the PO Valley basin. Atmos Environ 30(2), 201–213 (1996). doi:10.1016/1352-2310(95)00298-d

    Article  Google Scholar 

  • Gierczak, T., Burkholder, J.B., Bauerle, S., Ravishankara, A.R.: Photochemistry of acetone under tropospheric conditions. Chem Phys 231(2–3), 229–244 (1998). doi:10.1016/S0301-0104(98)00006-8

    Article  Google Scholar 

  • Grosjean, D., Wright, B.: Carbonyls in urban fog, ice fog, cloudwater and rainwater. Atmos Environ 17(10), 2093–2096 (1983). doi:10.1016/0004-6981(83)90368-2

    Article  Google Scholar 

  • Guo, H., Ling, Z.H., Cheung, K., Wang, D.W., Simpson, I.J., Blake, D.R.: Acetone in the atmosphere of Hong Kong: Abundance, sources and photochemical precursors. Atmos Environ 65, 80–88 (2013). doi:10.1016/j.atmosenv.2012.10.027

    Article  Google Scholar 

  • Hallquist, M., Wenger, J.C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N.M., George, C., Goldstein, A.H., Hamilton, J.F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M., Jimenez, J.L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, T.F., Monod, A., Prévôt, A.S.H., Seinfeld, J.H., Surratt, J.D., Szmigielski, R., Wildt, J.: The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atmos Chem Phys Discuss 9(1), 3555–3762 (2009). doi:10.5194/acpd-9-3555-2009

    Article  Google Scholar 

  • Herbarth, O., Rehwagen, M., Herbarth, O., Ronco, A.E.: The influence of localized emittants on the concentration of volatile organic compounds in the ambient air measured close to ground level. Environ Toxicol Water Qual 12(1), 31–37 (1997). doi:10.1002/(SICI)1098-2256(1997)12:1<31::AID-TOX5>3.0.CO;2[-‐]9

    Article  Google Scholar 

  • Herckes, P., Hannigan, M.P., Trenary, L., Lee, T., Collett Jr., J.L.: Organic compounds in radiation fogs in Davis (California). Atmos Res 64(1–4), 99–108 (2002). doi:10.1016/s0169-8095(02)00083-2

    Article  Google Scholar 

  • Herckes, P., Valsaraj, K.T., Collett Jr., J.L.: A review of observations of organic matter in fogs and clouds: Origin, processing and fate. Atmos Res 132–133, 434–449 (2013). doi:10.1016/j.atmosres.2013.06.005

    Article  Google Scholar 

  • Houdier, S., Perrier, S., Defrancq, E., Legrand, M.: A new fluorescent probe for sensitive detection of carbonyl compounds: sensitivity improvement and application to environmental water samples. Anal Chim Acta 412(1–2), 221–233 (2000). doi:10.1016/S0003-2670(99)00875-2

    Article  Google Scholar 

  • Jacob, D.J., Waldman, J.M., Munger, J.W., Hoffmann, M.R.: A field investigation of physical and chemical mechanisms affecting pollutant concentrations in fog droplets. Tellus B 36(4) (1984)

  • Jacob, D.J., Waldman, J.M., Munger, J.W., Hoffmann, M.R.: Chemical composition of fogwater collected along the California coast. Environ Sci Technol 19(8), 730–736 (1985). doi:10.1021/es00138a013

    Article  Google Scholar 

  • Jacob, D.J., Field, B.D., Jin, E.M., Bey, I., Li, Q., Logan, J.A., Yantosca, R.M., Singh, H.B.: Atmospheric budget of acetone. J Geophys Res Atmos 107(D10), ACH 5-1–ACH 5–17 (2002). doi:10.1029/2001JD000694

    Article  Google Scholar 

  • Li, P., Li, X., Yang, C., Wang, X., Chen, J., Collett Jr., J.L.: Fog water chemistry in Shanghai. Atmos Environ 45(24), 4034–4041 (2011). doi:10.1016/j.atmosenv.2011.04.036

    Article  Google Scholar 

  • Luecken, D.J., Hutzell, W.T., Strum, M.L., Pouliot, G.A.: Regional sources of atmospheric formaldehyde and acetaldehyde, and implications for atmospheric modeling. Atmos Environ 47, 477–490 (2012). doi:10.1016/j.atmosenv.2011.10.005

    Article  Google Scholar 

  • Matsumoto, K., Kawai, S., Igawa, M.: Dominant factors controlling concentrations of aldehydes in rain, fog, dew water, and in the gas phase. Atmos Environ 39(38), 7321–7329 (2005). doi:10.1016/j.atmosenv.2005.09.009

    Article  Google Scholar 

  • Mhadeshwar, A.B..., Wang, H., Vlachos, D.G.: Thermodynamic consistency in microkinetic development of surface reactions. J Phys Chem 107, 12721–12733 (2003)

    Article  Google Scholar 

  • Millet, M., Sanusi, A., Wortham, H.: Chemical composition of fogwater in an urban area: Strasbourg (France). Environ Pollut 94(3), 345–354 (1996). doi:10.1016/S0269-7491(96)00064-4

    Article  Google Scholar 

  • Pal, R., Kim, K.-H., Hong, Y.-J., Jeon, E.-C.: The pollution status of atmospheric carbonyls in a highly industrialized area. J Hazard Mater 153(3), 1122–1135 (2008). doi:10.1016/j.jhazmat.2007.09.068

    Article  Google Scholar 

  • Poulain, L., Katrib, Y., Isikli, E., Liu, Y., Wortham, H., Mirabel, P., Calvé, S.L., Monod, A.: In-cloud multiphase behaviour of acetone in the troposphere: Gas uptake, Henry’s law equilibrium and aqueous phase photooxidation. Chemosphere 81(3), 312–320 (2010). doi:10.1016/j.chemosphere.2010.07.032

    Article  Google Scholar 

  • Raja, S., Ravikrishna, R., Kommalapati, R.R., Valsaraj, K.T.: Monitoring of fogwater chemistry in the gulf coast urban industrial corridor: baton rouge (Louisiana). Environ Monit Assess 110(1–3), 99–120 (2005). doi:10.1007/s10661-005-6281-2

    Article  Google Scholar 

  • Raja, S., Raghunathan, R., Yu, X.-Y., Lee, T., Chen, J., Kommalapati, R.R., Murugesan, K., Shen, X., Qingzhong, Y., Valsaraj, K.T., Collett Jr., J.L.: Fog chemistry in the Texas–Louisiana gulf coast corridor. Atmos Environ 42(9), 2048–2061 (2008). doi:10.1016/j.atmosenv.2007.12.004

    Article  Google Scholar 

  • Raja, S., Raghunathan, R., Kommalapati, R.R., Shen, X., Collett Jr., J.L., Valsaraj, K.T.: Organic composition of fogwater in the Texas–Louisiana gulf coast corridor. Atmos Environ 43(27), 4214–4222 (2009). doi:10.1016/j.atmosenv.2009.05.029

    Article  Google Scholar 

  • Simon, H., Beck, L., Bhave, P.V., Divita, F., Hsu, Y., Luecken, D.J., Mobley, D., Pouliot, G.A., Reff, A., Sarwar, G., Strum, M.L.: The development and uses of EPA’s SPECIATE database. Atmos Pollut Res 1(4), 196–206 (2010). http://www.atmospolres.com/issue4.html

    Article  Google Scholar 

  • Singh, H.B., O’Hara, D., Herlth, D., Sachse, W., Blake, D.R., Bradshaw, J.D., Kanakidou, M., Crutzen, P.J.: Acetone in the atmosphere: Distribution, sources, and sinks. J Geophys Res Atmos 99(D1), 1805–1819 (1994). doi:10.1029/93JD00764

    Article  Google Scholar 

  • Stefan, M.I., Hoy, A.R., Bolton, J.R.: Kinetics and mechanism of the degradation and mineralization of acetone in dilute aqueous solution sensitized by the UV photolysis of hydrogen peroxide. Environ Sci Technol 30(7), 2382–2390 (1996). doi:10.1021/es950866i

    Article  Google Scholar 

  • Steinberg, S., Kaplan, I.R.: The determination of Low molecular weight aldehydes in rain, Fog and mist by reversed phase liquid chromatography of the 2, 4-dinitrophenylhydrazone derivatives. Int J Environ Anal Chem 18(4), 253–266 (1984). doi:10.1080/03067318408077007

    Article  Google Scholar 

  • Straub, D.J., Hutchings, J.W., Herckes, P.: Measurements of fog composition at a rural site. Atmos Environ 47, 195–205 (2012). doi:10.1016/j.atmosenv.2011.11.014

    Article  Google Scholar 

  • Vaïtilingom, M., Deguillaume, L., Vinatier, V., Sancelme, M., Amato, P., Chaumerliac, N., Delort, A.-M.: Potential impact of microbial activity on the oxidant capacity and organic carbon budget in clouds. Proc Natl Acad Sci 110(2), 559–564 (2013). doi:10.1073/pnas.1205743110

    Article  Google Scholar 

  • van Pinxteren, D., Plewka, A., Hofmann, D., Müller, K., Kramberger, H., Svrcina, B., Bächmann, K., Jaeschke, W., Mertes, S., Collett Jr., J.L., Herrmann, H.: Schmücke hill cap cloud and valley stations aerosol characterisation during FEBUKO (II): Organic compounds. Atmos Environ 39(23–24), 4305–4320 (2005). doi:10.1016/j.atmosenv.2005.02.014

    Article  Google Scholar 

  • Wang, Y., Guo, J., Wang, T., Ding, A., Gao, J., Zhou, Y., Collett Jr., J.L., Wang, W.: Influence of regional pollution and sandstorms on the chemical composition of cloud/fog at the summit of Mt. Taishan in northern China. Atmos Res 99(3–4), 434–442 (2011). doi:10.1016/j.atmosres.2010.11.010

    Article  Google Scholar 

  • Wang, Y., Zhang, J., Marcotte, A.R., Karl, M., Dye, C., Herckes, P.: Fog chemistry at three sites in Norway. Atmos Res 151, 72–81 (2015). doi:10.1016/j.atmosres.2014.04.016

    Article  Google Scholar 

  • Zhou, X., Mopper, K.: Photochemical production of low-molecular-weight carbonyl compounds in seawater and surface microlayer and their air-sea exchange. Mar Chem 56(3–4), 201–213 (1997). doi:10.1016/S0304-4203(96)00076-X

    Article  Google Scholar 

  • Zweidinger, R.B., Sigsby, J.E., Tejada, S.B., Stump, F.D., Dropkin, D.L., Ray, W.D., Duncan, J.W.: Detailed hydrocarbon and aldehyde mobile source emissions from roadway studies. Environ Sci Technol 22(8), 956–962 (1988). doi:10.1021/es00173a015

    Article  Google Scholar 

Download references

Acknowledgments

Research funding for this work was provided by NSF Grant AGS-1106569. A special thanks to both Dr. William Brookshire, Schlumberger, and Chevron for providing the William Brookshire Graduate Assistantship in Chemical Engineering, the Schlumberger Assistantship Supplement, and the Chevron Engineering Graduate Assistantship, respectively, to Aubrey A. Heath. We thank Dr. Patrick K. Bollich of the LSU AgCenter for providing us the use of the land for the fog water collection site, Dr. Huiming Bao from the LSU Department of Geology and Geophysics for access to his IC instrument, Dr. John White and Havalend Steinmuller from the LSU Department of Oceanography and Coastal Sciences for the DOC analyses, and Amie K. Hansel, Harsha Vempati, Andrew Pham, and Laura Huber for help with the fog water collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalliat T. Valsaraj.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(TIFF 4.40 MB)

ESM 2

(PDF 97.7 KB)

(TIFF 441 KB)

ESM 4

(PDF 14.2 KB)

ESM 5

(PDF 79.2 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heath, A.A., Vaïtilingom, M., Ehrenhauser, F.S. et al. Determination of aldehydes and acetone in fog water samples via online concentration and HPLC. J Atmos Chem 72, 165–182 (2015). https://doi.org/10.1007/s10874-015-9312-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-015-9312-6

Keywords

Navigation