Skip to main content

Advertisement

Log in

Oligomerization of levoglucosan by Fenton chemistry in proxies of biomass burning aerosols

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Reactions of levoglucosan with \( OH^{ \bullet } \) produced from Fenton chemistry were studied in solution serving as a proxy for biomass burning aerosols. Two modes of oligomerization (≤2000 u) were observed for reaction times between 1 and 7 days using matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF-MS) and laser desorption ionization time-of-flight mass spectrometry (LDI-TOF-MS). Single-mass unit continuum mass distributions with dominant −2 u patterns were measured and superimposed by a +176/+162 u oligomer series. This latter oligomer pattern was attributed to a Criegee rearrangement (+14 u) of levoglucosan, initiated by \( OH^{ \bullet } \), forming a lactone (176 u). The acid-catalyzed reaction of any ROH from levoglucosan (+162 u) forms an ester through transesterification of the lactone functionality, whereupon propagation forms polyesters. Proposed products and chemical mechanisms are suggested as sources and precursors of humic-like substances (HULIS), which are known to possess a large saccharic component and are possibly formed from biomass burning aerosols (Andreae, Global Biomass Burning, MIT Press, Cambridge, Massachusetts, 3–21, 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Scheme 3
Fig. 5
Fig. 6
Scheme 4

Similar content being viewed by others

References

  • Andreae, M.O.: Biomass burning: Its history, use, and distribution and its impact on environmental quality and global climate. In: Levine, J.S. (ed.) Global Biomass Burning, pp. 3–21. MIT Press, Cambridge, Mass (1991)

    Google Scholar 

  • Arakaki, T., Anastasio, C., Shu, P.G., Faust, B.C.: Aqueous-phase photoproduction of hydrogen peroxide in authentic cloud waters: wavelength dependence, and the effects of filtration and freeze–thaw cycles. Atmos. Environ. 29(14), 1697–703 (1995)

    Article  Google Scholar 

  • Badger, C.L., George, I., Griffiths, P.T., Braban, C.F., Cox, R.A., Abbatt, J.P.D.: Phase transitions and hygroscopic growth of aerosol particles containing humic acid and mixtures of humic acid and ammonium sulphate. Atmos. Chem. Phys. 6, 755–768 (2006)

    Google Scholar 

  • Balasubramanian, R., Victor, T., Begum, R.: Impact of biomass burning on rainwater acidity and composition in Singapore. J. Geophys. Res-Atmos. 104(D21), 26881–26890 (1999)

    Article  Google Scholar 

  • Calvert, J.G., Lazrus, A., Kok, G.L., Heikes, B.G., Walega, J.G., Lind, J., Cantrell, C.A.: Chemical mechanisms of acid generation in the troposphere. Nature 317(6032), 27–35 (1985)

    Article  Google Scholar 

  • Chan, M.N., Chan, C.K.: Hygroscopic properties of two model humic-like substances and their mixtures with inorganics of atmospheric importance. Environ. Sci. Technol. 37(22), 5109–5115 (2003)

    Article  Google Scholar 

  • Chan, M.N., Choi, M.Y., Ng, N.L., Chan, C.K.: Hygroscopicity of water-soluble organic compounds in atmospheric aerosols: amino acids and biomass burning derived organic species. Environ. Sci. Technol. 39(6), 1555–1562 (2005)

    Article  Google Scholar 

  • Daum, P.H.: Observations of hydrogen peroxide and sulfur(IV) in air, cloudwater, and precipitation and their implications for the reactive scavenging of sulfur dioxide. Atmos. Res. 25(1–3), 89–102 (1990)

    Article  Google Scholar 

  • Deguillaume, L., Leriche, M., Chaurnerliac, N.: Impact of radical versus non-radical pathway in the Fenton chemistry on the iron redox cycle in clouds. Chemosphere 60(5), 718–724 (2005)

    Article  Google Scholar 

  • Deutsch, F., Hoffmann, P., Ortner, H.M.: Field experimental investigations on the Fe(II)- and Fe(III)-content in cloudwater samples. J. Atmos. Chem. 40(1), 87–105 (2001)

    Article  Google Scholar 

  • Dinar, E., Mentel, T.F., Rudich, Y.: The density of humic acids and humic like substances (HULIS) from fresh and aged wood burning and pollution aerosol particles. Atmos. Chem. Phys. 6, 5213–5224 (2006)

    Google Scholar 

  • Dinar, E., Taraniuk, I., Graber, E.R., Katsman, S., Moise, T., Anttila, T., Mentel, T.F., Rudich, Y.: Cloud condensation nuclei properties of model and atmospheric HULIS. Atmos. Chem. Phys. 6, 2465–2481 (2006)

    Article  Google Scholar 

  • Dinar, E., Taraniuk, I., Graber, E.R., Anttila, T., Mentel, T.F., Rudich, Y.: Hygroscopic growth of atmospheric and model humic-like substances. J. Geophys. Res-Atmos. 112(D5), (2007)

  • Gelencser, A., Hoffer, A., Krivacsy, Z., Kiss, G., Molnar, A., and Meszaros, E.: On the possible origin of humic matter in fine continental aerosol. J. Geophys. Res-Atmos. 107(D12), 4137 (2002) DOI 10.1029/2001JD001299

    Article  Google Scholar 

  • Graber, E.R., Rudich, Y.: Atmospheric HULIS: How humic-like are they? A comprehensive and critical review. Atmos. Chem. Phys. 6, 729–753 (2006)

    Google Scholar 

  • Graber, E.R., Rudich, Y.: Atmospheric HULIS: how humic-like are they? A comprehensive and critical review. Atmos. Chem. Phys. Disc. 5, 9801–9860 (2005)

    Article  Google Scholar 

  • Graham, B., Mayol-Bracero, O.L., Guyon, P., Roberts, G.C., Decesari, S., Facchini, M.C., Artaxo, P., Maenhaut, W., Koll, P., Andreae, M.O.: Water-soluble organic compounds in biomass burning aerosols over Amazonia 1. Characterization by NMR and GC-MS. J. Geophys. Res-Atmos. 107(D20), LBA14/1-LBA14/16 (2002)

    Article  Google Scholar 

  • Hao, C.Y., Ma, X.L., Liu, Z.Q., Ji, Y.P., Liu, S.Y., Liu, C.C., Sun, Y.X., Liu, J.Z.: Matrix-assisted laser desorption/ionization mass spectral study of saccharides. Chem. J. Chin U. 19(7), 1090–1094 (1998)

    Google Scholar 

  • Harvey, D.J., Rudd, P.M., Bateman, R.H., Bordoli, R.S., Howes, K., Hoyes, J.B., Vickers, R.G.: Examination of complex oligosaccharides by matrix-assisted laser-desorption ionization mass-spectrometry on time-of-flight and magnetic-sector instruments. Org. Mass Spectrom. 29(12), 753–766 (1994)

    Article  Google Scholar 

  • Havers, N., Burba, P., Lambert, J., Klockow, D.: Spectroscopic characterization of humic-like substances in airborne particulate matter. J. Atmos. Chem. 29(1), 45–54 (1998)

    Article  Google Scholar 

  • Herrmann, H., Ervens, B., Jacobi, H.W., Wolke, R., Nowacki, P., Zellner, R.: CAPRAM2.3: A chemical aqueous phase radical mechanism for tropospheric chemistry. J. Atmos. Chem. 36(3), 231–284 (2000)

    Article  Google Scholar 

  • Hoffer, A., Kiss, G., Blazso, M., Gelencser, A.: Chemical characterization of humic-like substances (HULIS) formed from a lignin-type precursor in model cloud water. Geophys. Res. Lett. 31(6), L06115 (2004) DOI 10.1029/2003GL018962

    Article  Google Scholar 

  • Holmes, B.J., Petrucci, G.A.: Water-soluble oligomer formation from acid-catalyzed reactions of levoglucosan in proxies of atmospheric aqueous aerosols. Environ. Sci. Technol. 40(16), 4983–4989 (2006)

    Article  Google Scholar 

  • Hoffer, A., Gelencser, A., Guyon, P., Kiss, G., Schmid, O., Frank, G.P., Artaxo, P., Andreae, M.O.: Optical properties of humic-like substances (HULIS) in biomass-burning aerosols. Atmos. Chem. Phys. 6, 3563–3570 (2006)

    Article  Google Scholar 

  • Keki, S., Szilagyi, L.S., Deak, G., Zsuga, M.: Effects of different alkali metal ions on the cationization of poly(ethylene glycol)s in matrix-assisted laser desorption/ionization mass spectrometry: a new selectivity parameter. J. Mass Spectrom. 37(10), 1074–1080 (2002)

    Article  Google Scholar 

  • Kelly, T.J., Daum, P.H., Schwartz, S.E.: Measurements of peroxides in cloudwater and rain. J. Geophys. Res-Atmos. 90(D5), 7861–71 (1985)

    Google Scholar 

  • Lee, Y.S., Collins, D.R., Li, R.J., Bowman, K.P., Feingold, G.: Expected impact of an aged biomass burning aerosol on cloud condensation nuclei and cloud droplet concentrations. J. Geophys. Res-Atmos. 111(D22), D22204 (2006) DOI 10.1029/2005JD006464

    Article  Google Scholar 

  • Lelieveld, J., Dentener, F.J.: Hydroxyl radicals maintain the self-cleansing capacity of the troposphere. Atmos. Chem. Phys. Disc. 4, 3699–3720 (2004)

    Article  Google Scholar 

  • Ludwig, J., Klemm, O.: Acidity of size-fractionated aerosol-particles. Water Air Soil Pollur. 49(1–2), 35–50 (1990)

    Article  Google Scholar 

  • Majestic, B.J., Schauer, J.J., Shafer, M.M., Turner, J.R., Fine, P.M., Singh, M., Sioutas, C.: Development of a wet-chemical method for the speciation of iron in atmospheric aerosols. Environ. Sci. Technol. 40(7), 2346–2351 (2006)

    Article  Google Scholar 

  • Manini, P., La Pietra, P., Panzella, L., Napolitano, A., d’Ischia, M.: Glyoxal formation by Fenton-induced degradation of carbohydrates and related compounds. Carbohydr. Res. 341(11), 1828–1833 (2006)

    Article  Google Scholar 

  • Mayol-Bracero, O.L., Guyon, P., Graham, B., Roberts, G., Andreae, M.O., Decesari, S., Facchini, M.C., Fuzzi, S., Artaxo, P.: Water-soluble organic compounds in biomass burning aerosols over Amazonia 2. Apportionment of the chemical composition and importance of the polyacidic fraction. J. Geophys. Res. 107(D20), 8091 (2002) DOI 10.1029/2001JD000522

    Article  Google Scholar 

  • Mele, A., Malpezzi, L.: Noncovalent association phenomena of 2,5-dihydroxybenzoic acid with cyclic and linear oligosaccharides. A matrix-assisted laser desorption/ionization time-of-flight mass spectrometric and x-ray crystallographic study. J. Am. Soc. Mass. Spectrom. 11(3), 228–236 (2000)

    Article  Google Scholar 

  • Mochida, M., Kawamura, K.: Hygroscopic properties of levoglucosan and related organic compounds characteristics to biomass burning aerosol particles. J. Geophys. Res-Atmos. 109(D21), D21202/1–D21202/8 (2004)

    Article  Google Scholar 

  • Padro, L.T., Asa-Awuku, A., Morrison, R., Nenes, A.: Inferring thermodynamic properties from CCN activation experiments: a) single-component and binary aerosols. Atmos. Chem. Phys. Disc. 7, 3805–3836 (2007)

    Article  Google Scholar 

  • Penner, J.E., Ghan, S.J., Walton, J.J.: Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications. MIT Press, Cambridge, Mass (1991)

    Google Scholar 

  • Rosenorn, T., Kiss, G., Bilde, M.: Cloud droplet activation of saccharides and levoglucosan particles. Atmos. Environ. 40(10), 1794–1802 (2006)

    Article  Google Scholar 

  • Schauer, J.J., Rogge, W.F., Hildemann, L.M., Mazurek, M.A., Cass, G.R.: Source apportionment of airborne particulate matter using organic compounds as tracers. Atmos. Environ. 30(22), 3837–3855 (1996)

    Article  Google Scholar 

  • Schreiber, S.L., Liew, W.F.: Criegee rearrangement of alpha-alkoxy hydroperoxides – A synthesis of esters and lactones that complements the Baeyer-Villiger oxidation of ketones. Tetrahedron Lett. 24(23), 2363–2366 (1983)

    Article  Google Scholar 

  • Schuchmann, M.N., Sonntag, C.V.: Radiation chemistry of carbohydrates. Part 14. Hydroxyl radical induced oxidation of D-glucose in oxygenated aqueous solutions. J. Chem. Soc. Perkin Trans. 2, 1958–1963 (1977)

    Google Scholar 

  • Shafizadeh, F., Furneauz, R.H., Cochran, T.G., Scholl, J.P., Sakai, Y.: Production of levoglucosan and glucose from pyrolysis of cellulosic materials. J. Appl. Polym. Sci. 23, 3525–3539 (1979)

    Article  Google Scholar 

  • Silverstein, R.M., Bassler, G.C., Morrill, T.C.: Spectrometric identification of organic compounds. John Wiley and Sons, Inc., New York (1991)

    Google Scholar 

  • Simoneit, B.R.T., Schauer, J.J., Nolte, C.G., Oros, D.R., Elias, V.O., Fraser, M.P., Rogge, W.F., Cass, G.R.: Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmos. Environ. 33, 173–182 (1999)

    Article  Google Scholar 

  • Simoneit, B.R.T.: Biomass burning – a review of organic tracers for smoke from incomplete combustion. Appl. Geochem. 17, 129–162 (2002)

    Article  Google Scholar 

  • Vione, D., Maurino, V., Minero, C., Pelizzetti, E.: The atmospheric chemistry of hydrogen peroxide: A review. Anal. Chim. 93(4), 477–488 (2003)

    Google Scholar 

  • Wang, Y.Q., Rashidzadeh, H., Guo, B.C.: Structural effects on polyether cationization by alkali metal ions in matrix-assisted laser desorption/ionization. J. Am. Soc. Mass. Spectrom. 11(7), 639–643 (2000)

    Article  Google Scholar 

  • Weinstein-Lloyd, J., Schwartz, S.E.: Low-intensity radiolysis study of free-radical reactions in cloudwater: hydrogen peroxide production and destruction. Environ. Sci. Technol. 25(4), 791–800 (1991)

    Article  Google Scholar 

  • Willson, R.L.: The reaction of oxygen with radiation-induced free radicals in DNA and related compounds. Int. J. Radiat Biol. 17(4), 349–358 (1970)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank A. Wurthmann for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe A. Petrucci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holmes, B.J., Petrucci, G.A. Oligomerization of levoglucosan by Fenton chemistry in proxies of biomass burning aerosols. J Atmos Chem 58, 151–166 (2007). https://doi.org/10.1007/s10874-007-9084-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-007-9084-8

Keywords

Navigation