Skip to main content

Advertisement

Log in

A Practical bi-parameter formula of gas transfer velocity depending on wave states

  • Original Articles
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

The parameter that describes the kinetics of the air-sea exchange of a poorly soluble gas is the gas transfer velocity which is often parameterized as a function of wind speed. Both theoretical and experimental studies suggest that wind waves and their breaking can significantly enhance the gas exchange at the air-sea interface. A relationship between gas transfer velocity and a turbulent Reynolds number related to wind waves and their breaking is proposed based on field observations and drag coefficient formulation. The proposed relationship can be further simplified as a function of the product of wind speed and significant wave height. It is shown that this bi-parameter formula agrees quantitatively with the wind speed based parameterizations under certain wave age conditions. The new gas transfer velocity attains its maximum under fully developed wave fields, in which it is roughly dependent on the square of wind speed. This study provides a practical approach to quantitatively determine the effect of waves on the estimation of air-sea gas fluxes with routine observational data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Borges, A. V., J. Vanderborght, L. Schiettecatte, F. Gazeau, S. Ferron-Smith, B. Delille and M. Frankignoulle (2004): Variability of the gas transfer velocity of CO2 in a macrotidal estuary (the Scheldt). Estuaries, 27(4), 593–603.

    Article  Google Scholar 

  • Carter, D. J. T. (1982): Prediction of wave height and period for a constant wind velocity using the JONSWAP results. Ocean Engineer., 9, 17–33.

    Article  Google Scholar 

  • Dobson, F. W., S. D. Smith and R. J. Anderson (1994): Measuring the relationship between wind stress and sea state in the open ocean in the presence of swell. Atmosphere-Ocean, 32(1), 237–256.

    Google Scholar 

  • Geernaert, G. L., S. E. Larsen and F. Hansen (1987): Measurements of the wind stress, heat flux, and turbulent intensity during storm conditions over the North Sea. J. Geophys. Res., 92, 13127–13139.

    Article  Google Scholar 

  • Guan, C., S. Zhang, J. Sun and Q. Sun (2004): On the fetch law for wind waves in deep water. Period. Ocean Univ. China, 34(5), 704–712 (in Chinese with English abstract).

    Google Scholar 

  • Ho, D. T., C. S. Law, M. J. Smith, P. Schlosser, M. Harvey and P. Hill (2006): Measurements of air-sea gas exchange at high wind speeds in the Southern Ocean: Implications for global parameterizations. Geophys. Res. Lett., 33, L16611, doi:10.1029/2006GL026817.

    Article  Google Scholar 

  • Jacobs, C. J., W. Kohsiek and W. A. Oost (1999): Air-sea fluxes and transfer velocity of CO2 over the North Sea: results from ASGAMAGE. Tellus, 51B, 629–641.

    Google Scholar 

  • Jähne, B., K. O. Münnich, R. Bosinger, A. Dutzi, W. Huber and P. Libner (1987): On parameters influencing air-water gas exchange. J. Geophys. Res., 92, 1937–1949.

    Article  Google Scholar 

  • Janssen, J. A. M. (1997): Does wind stress depend on sea-state or not? A statistical analysis of HEXMAX data. Bound.-Layer Meteor., 83, 479–503.

    Article  Google Scholar 

  • Johnson, H., K. J. Højstrup, H. J. Vested and S. E. Larsen (1998): On the dependence of sea surface roughness on wind waves. J. Phys. Oceanogr., 28(9), 1702–1716.

    Article  Google Scholar 

  • Jones, I. S. F. and Y. Toba (2001): Wind Stress over the Ocean. Cambridge Univ. Press, Cambridge, U.K., 307 pp.

    Book  Google Scholar 

  • Komori, S., R. Nagaosa and Y. Murakami (1993): Turbulence structure and mass transfer across a sheared air-water interface in a wind-driven turbulence. J. Fluid Mech., 249, 161–183.

    Article  Google Scholar 

  • Kuss, J., K. Nagel and B. Schneider (2004): Evidence from the Baltic Sea for an enhanced CO2 air-sea transfer velocity. Tellus, 56B, 175–182.

    Google Scholar 

  • Lafon, C., J. Piazzola, P. Forget and S. Despiau (2007): Whitecap coverage in coastal environment for steady and unsteady wave field conditions. J. Mar. Syst., 66, 38–46.

    Article  Google Scholar 

  • Liss, P. S. and L. Merlivat (1986): Air-sea gas exchange rates: introduction and synthesis. p. 113–129. In The Role of Air-Sea Exchange in Geochemical Cycling, ed. by P. Buart-Menard, Reidel, Washington, D.C.

    Google Scholar 

  • MicGillis, W. R., J. B. Edson, J. E. Hare and C. W. Fairall (2001): Direct covariance air-sea CO2 fluxes. J. Geophys. Res., 106, 16729–16745.

    Article  Google Scholar 

  • Mitsuyasu, H. (1968): On the growth of the spectrum of wind-generated waves (I). Rep. Res. Inst. Appl. Mech., Kyushu Univ., 16, 459–482.

    Google Scholar 

  • Monahan, E. C. and M. C. Spillane (1984): The role of oceanic whitecaps in air-sea exchange. p. 495–503. In Gas Transfer at Water Surfaces, ed. by W. Brutsaert and G. H. Jirka, Reidel, Dordrecht.

    Google Scholar 

  • Nightingale, P. D., G. Malin, C. S. Law, A. J. Watson, P. S. Liss, M. I. Liddicoat, J. Boutin and R. C. Upstill-Goddard (2000a): In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Global Biogeochem. Cycles, 14, 373–387.

    Article  Google Scholar 

  • Nightingale, P. D., P. S. Liss and P. Schlosser (2000b): Measurements of air-sea gas transfer during an open ocean algal bloom. Geophys. Res. Lett., 27(14), 2117–2120.

    Article  Google Scholar 

  • Ocampo-Torres, F. J. and M. A. Donelan (1995): On the influence of fetch and the wave field on the CO2 transfer process: Laboratory measurements. p. 543–552. In Air-Water Gas Transfer, ed. by B. Jähne and E. C. Monahan, AEON Verlag & Studio, Hanau.

    Google Scholar 

  • Oost, W. A. (1999): ASGAMAGE final report. KNMI Scientific Report, 99-04, Royal Netherlands Meteorological Institute, De Bilt.

    Google Scholar 

  • Oost, W. A., G. J. Komen, C. M. Jacobs and C. Van Oort (2002): New evidence for a relationship between wind stress and wave age from measurements during ASGAMAGE. Bound.-Layer Meteor., 103, 409–438.

    Article  Google Scholar 

  • Pierson, W. J. (1991): Comment on “Effects of sea maturity on satellite altimeter measurements” by Roman E. Glazman and Stuart H. Pilorz. J. Geophys. Res., 96(C3), 4973–4977.

    Article  Google Scholar 

  • Smith, S. D. (1980): Wind stress and heat flux over the ocean in gale force winds. J. Phys. Oceanogr., 10, 709–726.

    Article  Google Scholar 

  • Sugihara, Y., H. Tsumori, T. Ohga, H. Yoshioka and S. Serizawa (2007): Variation of whitecap coverage with wave-field conditions. J. Mar. Syst., 66, 47–60.

    Article  Google Scholar 

  • Sweeney, C., E. Gloor, A. R. Jacobson, R. M. Key, G. McKinley, J. L. Sarmiento and R. Wanninkhof (2007): Constraining global air-sea gas exchange for CO2 with recent bomb 14C measurements. Global Biogeochem. Cycles, 21, GB2015, doi:10.1029/2006GB002784.

    Article  Google Scholar 

  • Toba, Y. (1972): Local balance in the air-sea boundary process, I. On the growth process of wind waves. J. Oceanogr. Soc. Japan, 28, 109–120.

    Article  Google Scholar 

  • Toba, Y., S. Komori, Y. Suzuki and D. Zhao (2006): Similarity and dissimilarity in air-sea momentum and CO2 transfers: the nondimensional transfer coefficients in light of the windsea Reynolds number. p. 53–82. In Atmosphere-Ocean Interactions, Volume II, ed. by W. Perrie, WIT Press.

  • Wanninkhof, R. (1992): Relationship between gas exchange and wind speed over the ocean. J. Geophys. Res., 97, 7373–7381.

    Article  Google Scholar 

  • Wanninkhof, R. and W. R. McGillis (1999): A cubic relationship between air-sea CO2 exchange and wind speed. Geophys. Res. Lett., 26, 1889–1892.

    Article  Google Scholar 

  • Wanninkhof, R., K. F. Sullivan and Z. Top (2004): Air-sea gas transfer in the Southern Ocean. J. Geophys. Res., 109, C08S19, doi:10.1029/2003JC001767.

    Article  Google Scholar 

  • Woolf, D. K. (1997): Bubbles and their role in gas exchange. p. 173–205. In The Sea Surface and Global Change, ed. by P. S. Liss and R. A. Duce, Cambridge Univ. Press, Cambridge.

    Chapter  Google Scholar 

  • Woolf, D. K. (2005): Parameterization of gas transfer velocities and sea-state-dependent wave breaking. Tellus, 57B, 87–94.

    Google Scholar 

  • Wu, J. (1980): Wind-stress coefficients over sea surface near neutral conditions—A revisit. J. Phys. Oceanogr., 10, 727–740.

    Article  Google Scholar 

  • Yelland, M. J., B. I. Moat, P. K. Taylor, R. W. Pascal, J. Hutchings and V. C. Cornell (1998): Wind stress measurements of the open ocean drag coefficient corrected for air flow disturbance by the ship. J. Phys. Oceanogr., 28, 1511–1526.

    Article  Google Scholar 

  • Zhao, D. (2002): Preliminary study on wave characteristics in natural conditions. J. Ocean Univ. Qingdao, 32(6), 853–858 (in Chinese with English abstract).

    Google Scholar 

  • Zhao, D. and Y. Toba (2001): Dependence of whitecap coverage on wind and wind-wave properties. J. Oceanogr., 57, 603–616.

    Article  Google Scholar 

  • Zhao, D., Y. Toba, Y. Suzuki and S. Komori (2003): Effect of wind waves on air-sea gas exchange: proposal of an overall CO2 transfer velocity formula as a function of breaking-wave parameter. Tellus, 55B, 478–487.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongliang Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, D., Xie, L. A Practical bi-parameter formula of gas transfer velocity depending on wave states. J Oceanogr 66, 663–671 (2010). https://doi.org/10.1007/s10872-010-0054-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-010-0054-4

Keywords

Navigation