Skip to main content

Advertisement

Log in

Effects of seawater acidification on hydrolytic enzyme activities

  • Original Articles
  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

We have investigated the effects of seawater acidification on the activities of leucine aminopeptidase (LAPase), β-glucosidase (BGase), phosphatase (P-ase), α-glucosidase (AGase), and lipase (L-ase), which are important promoters of degradation of marine organic matter, including proteins, carbohydrates, organic phosphorus compounds, and lipids. Seawater samples were collected from a eutrophic coastal area, from Tokyo Bay, and from oligotrophic pelagic waters outside the Kuroshio Current. Enzyme activities were measured using fluorogenic substrates added to the seawater samples, which were acidified from pH 8.2 to 5.6 by a chemical buffer. Spontaneous hydrolysis of the substrates was shown to be negligible in heat-inactivated control samples, thus validating our results. LAPase was the most sensitive to acidification; enzyme activity rapidly decreased from pH 8.2 to 7.8, corresponding to a realistic scenario of ocean acidification. L-ase activity also decreased with acidification. Activities of P-ase and BGase were relatively constant across the pH levels examined, suggesting that their activity is not appreciably influenced by acidification. The effect of acidification on P-ase activities differed between the coastal and semipelagic samples, and this was likely due to freshwater influence at the nearshore station. Because of the low activity of AGase in the sample, the effect of acidification on this enzyme could not be examined. The effects of acidification on enzyme activity appear to vary depending on enzyme type and location, but we conclude that acidification will cause changes in the cycling of organic matter in marine ecosystems, in particular to proteinous and lipid substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ammerman, J. W. and F. Azam (1985): Bacterial 5′-nucleotidase in aquatic ecosystems: a novel mechanism of phosphorus regeneration. Science, 227, 1338–1340.

    Article  Google Scholar 

  • Arnosti, C. (2003): Microbial extracellular enzymes and their role in dissolved organic matter cycling. p. 315–342. In Aquatic Ecosystems: Interactivity of Dissolved Organic Matter, ed. by S. E. G. Findlay and R. L. Sinsabaugh, Academic Press, London.

    Google Scholar 

  • Azam, F. and R. A. Long (2001): Sea snow microcosms. Nature, 414, 495–498.

    Article  Google Scholar 

  • Caldeira, K. and M. E. Wickett (2003): Anthropogenic carbon and ocean pH. Nature, 425, 365.

    Article  Google Scholar 

  • Caldeira, K. and M. E. Wickett (2005): Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J. Geophys. Res., 110, C09S04, doi:10.1029/JC002671.

    Article  Google Scholar 

  • Chen, B., Y. Song, M. Nishio, S. Someya and M. Akai (2005): Modeling near — field dispersion from direct injection of carbon dioxide into the ocean. J. Geophys. Res., 110, C09S15, doi:1029/2004JC002567.

    Article  Google Scholar 

  • Christian, J. R. and D. M. Karl (1995): Bacterial ectoenzymes in marine waters: Activity ratios and temperature responses in three oceanographic provinces. Limnol. Oceanogr., 40, 1042–1049.

    Article  Google Scholar 

  • Chróst, R. J. and W. Siuda (2002): Ecology of microbial enzymes in lake ecosystems. p. 35–72. In Enzymes in the Environment: Activity, Ecology, and Applications, ed. by R. G. Burns and R. P. Dick, Marcel Dekker, New York.

    Google Scholar 

  • Coffin, R. B., M. T. Montgomery, T. J. Boyd and S. M. Masutani (2004): Influence of ocean CO2 sequestration on bacterial production. Energy, 29, 1511–1520.

    Article  Google Scholar 

  • Doney, S. C., V. J. Fabry, R. A. Feely and J. A. Kleypas (2009): Ocean acidification: The other CO2 problem. Annu. Rev. Mar. Sci., 1, 169–192, doi:10.1146/annurev.marine.010908.163834.

    Article  Google Scholar 

  • Dyhrman, S. T. and K. C. Ruttenberg (2006): Presence and regulation of alkaline phosphatase activity in eukaryotic phytoplankton from the coastal ocean: Implications for dissolved organic phosphorus remineralization. Limnol. Oceanogr., 51, 1381–1390.

    Article  Google Scholar 

  • El-Shahed, A. M., H. Ibrahim and M. Abd-Elnaeim (2006): Isolation and characterization of phosphatase enzyme from the freshwater macroalga Cladophora glomerata Kützing (chlorophyta). Pakistan J. Biol. Sci., 9, 2456–2461.

    Article  Google Scholar 

  • Engel, A., K. G. Schulz, U. Riebesell, R. Bellerby, B. Delille and M. Schartau (2008): Effects of CO2 on particle size distribution and phytoplankton abundance during a mesocosm bloom experiment (PeECE II). Biogeosciences, 5, 509–521.

    Article  Google Scholar 

  • Fukuda, R., Y. Sohrin, N. Saotome, H. Fukuda, T. Nagata and I. Koike (2000): East-west gradient in ectoenzymes activities in the subarctic Pacific: Possible regulation by zinc. Limnol. Oceanogr., 45, 930–939.

    Article  Google Scholar 

  • Gambin, F., G. Bogé and D. Jamet (1999): Alkaline phosphatase in a littoral Mediterranean marine ecosystem: Role of the main plankton size classes. Mar. Environ. Res., 47, 441–456.

    Article  Google Scholar 

  • Grossart, H.-P., M. Allgaier, U. Passow and U. Riebesell (2006): Testing the effect of CO2 concentration on the dynamics of marine heterotrophic bacterioplankton. Limnol. Oceanogr., 51, 1–11.

    Google Scholar 

  • Herzog, H. J. (2001): What future for carbon capture and sequestration? Environ. Sci. Tech., 35, 148A–153A.

    Article  Google Scholar 

  • Hoffert, M. I., K. Caldeira, G. Benford, D. R. Criswell, C. Green, H. Herzog, A. K. Jain, H. S. Kheshgi, K. S. Lackner, J. S. Lewis, H. D. Lightfoot, W. Manheimer, J. C. Mankins, M. E. Mauel, L. J. Perkins, M. E. Schlesinger, T. Volk and T. M. L. Wigley (2002): Advanced technology paths to global climate stability: Energy for a greenhouse planet. Science, 298, 981–987.

    Article  Google Scholar 

  • Hollibaugh, J. T. and F. Azam (1983): Microbial degradation of dissolved proteins in seawater. Limnol. Oceanogr., 28, 1104–1116.

    Article  Google Scholar 

  • Hoppe, H.-G. (1983): Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates Mar. Ecol. Prog. Ser., 11, 299–308.

    Article  Google Scholar 

  • Hoppe, H.-G. (2003): Phosphatase activity in the sea. Hydrobiologia, 493, 187–200.

    Article  Google Scholar 

  • Hoppe, H.-G., H. C. Giesenhagen and K. Gocke (1998): Changing patterns of bacterial substrate decomposition in a eutrophication gradient. Aquat. Microb. Ecol., 15, 1–13.

    Article  Google Scholar 

  • Hoppe, H.-G., C. Arnosti and G. F. Herndl (2002): Ecological significance of bacterial enzymes in the marine environment. p. 73–107. In Enzymes in the Environment: Activity, Ecology, and Applications, ed. by R. G. Burns and R. P. Dick, Marcel Dekker, New York.

    Google Scholar 

  • Huesemann, M. H., A. D. Skillman and E. A. Crecelius (2002): The inhibition of marine nitrification by ocean disposal of carbon dioxide. Mar. Pollut. Bull., 44, 142–148.

    Article  Google Scholar 

  • IMO (International Maritime Organization) (2008): London Protocol: Special Guidelines for Assessment of Carbon Dioxide Streams for Disposal into Sub-Seabed Geological Formations. 14 pp. (available at http://www.imo.org/includes/blastDataOnly.asp/data_id%3D25527/9-CO2SequestrationEnglish.pdf).

  • IPCC (Intergovernmental Panel on Climate Change) (2005): IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change, ed. by B. Metz, O. Davidson, H. C. de Coninck, M. Loos and L. A. Meyer, Cambridge University Press, Cambridge and New York, 442 pp.

    Google Scholar 

  • Ishimatsu, A., T. Kikkawa, M. Hayashi, K.-S. Lee and J. Kita (2004): Effects of CO2 on marine fish: larvae and adults. J. Oceanogr, 60, 731–741.

    Article  Google Scholar 

  • Karner, M., D. Fuks and G. J. Herndl (1992): Bacterial activity along a trophic gradient. Microb. Ecol., 24, 243–257.

    Article  Google Scholar 

  • Kleypas, J. A., R. A. Feely, V. J. Fabry, C. Langdon, C. L. Sabine and L. L. Robbins (2006): Impacts of Ocean Acidification on Coral Reefs and Other Marine Calcifiers: A Guide for Future Research. Report of a workshop sponsored by NSF, NOAA, and USGS, 88 pp. (available at http://www.isse.ucar.edu/florida/report/Ocean_acidification_res_guide.pdf).

  • Koike, I. and T. Nagata (1997): High potential activity of extracellular alkaline phosphatase in deep waters of the central Pacific. Deep-Sea Res. II, 44, 2283–2294.

    Article  Google Scholar 

  • Kurihara, H. (2008): Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Mar. Ecol. Prog. Ser., 373, 275–284.

    Article  Google Scholar 

  • Li, H., M. J. W. Veldhuis and A. F. Post (1998): Alkaline phosphatase activities among planktonic communities in the northern Red Sea. Mar. Ecol. Prog. Ser., 173, 107–115.

    Article  Google Scholar 

  • Marchetti, C. (1977): On geoengineering and the CO2 problem. Clim. Change, 1, 59–68.

    Article  Google Scholar 

  • Mayor, D. J., C. Matthews, K. Cook, A. F. Zuur and S. Hay (2007): CO2-induced acidification affects hatching success in Calanus finmarchicus. Mar. Ecol. Prog. Ser., 350, 91–97.

    Article  Google Scholar 

  • Misic, C., M. Castellano, M. Fabiano, N. Ruggieri, V. Saggiomo and P. Povero (2006): Ectoenzymatic activity in surface waters: A transect from the Mediterranean Sea across the Indian Ocean to Australia. Deep-Sea Res. I, 53, 1517–1532.

    Article  Google Scholar 

  • Orr, J. C. (2004): Modelling of ocean storage of CO2-The GOSAC study, Report PH4/37, International Energy Agency, Greenhouse Gas R&D Programme, Cheltenham, U.K., 96 pp.

    Google Scholar 

  • Orr, J. C., V. J. Fabry, O. Aumont, L. Bopp, S. C. Doney, R. A. Feely, A. Gnanadesikan, N. Gruber, A. Ishida, F. Joos, R. M. Key, K. Lindsay, E. Maier-Reimer, R. Matear, P. Monfray, A. Mouchet, R. G. Najjar, G.-K. Plattner, K. B. Rodgers, C. L. Sabine, J. L. Sarmiento, R. Schlitzer, R. D. Slater, I. T. Totterdell, M.-F. Weirig, Y. Yamanaka and A. Yool (2005): Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437, 681–686.

    Article  Google Scholar 

  • Patel, A. B., K. Fukami and T. Nishijima (2000): Regulation of seasonal variability of aminopeptidase activities in surface and bottom waters of Uranouchi Inlet, Japan. Aquat. Microb. Ecol., 21, 139–149.

    Article  Google Scholar 

  • Revilla, M., J. Alexander and P. M. Glibert (2005): Urea analysis in coastal waters: comparison of enzymatic and direct methods. Limnol. Oceanogr.: Methods, 3, 290–299.

    Google Scholar 

  • Riemann, L., G. F. Steward and F. Azam (2000): Dynamics of bacterial community composition and activity during a mesocosm diatom bloom. Appl. Environ. Microbiol., 66, 578–587.

    Article  Google Scholar 

  • Royal Society (2005): Ocean acidification due to increasing atmospheric carbon dioxide. Policy document 12/05. The Clyvedon Press, Cardiff, 57 pp. (available at http://royalsociety.org/displaypagedoc.asp?id=13539).

    Google Scholar 

  • Sedlacek, L., D. Thistle, K. R. Carman, J. W. Fleeger and J. P. Barry (2009): Effects of carbon dioxide on deep-sea harpacticoids revisited. Deep-Sea Res. I, 56, 1018–1025.

    Article  Google Scholar 

  • Shitashima, K. (1997): CO2 supply from deep-sea hydrothermal systems. Waste Managemefnt, 17, 385–390.

    Article  Google Scholar 

  • Smith, D. C., M. Simon, A. L. Alldredge and F. Azam (1992): Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature, 359, 139–142.

    Article  Google Scholar 

  • Smith, W. H. F. and D. T. Sandwell (1997): Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277, 1956–1962.

    Article  Google Scholar 

  • Takeuchi, K., Y. Fujioka, Y. Kawasaki and Y. Shirayama (1997): Impacts of high concentration of CO2 on marine organisms; a modification of CO2 ocean sequestration. Energy Convers. Manage., 38, S337–S341.

    Article  Google Scholar 

  • Tanaka, T., T. F. Thingstad, T. Løvdal, H.-P. Grossart, A. Larsen, K. G. Schulz and U. Riebesell (2008): Availability of phosphate for phytoplankton and bacteria and of labile organic carbon for bacteria at different pCO2 levels in a mesocosm study. Biogeosciences, 5, 669–678.

    Article  Google Scholar 

  • Weiss, M. S., U. Abele, J. Weckesser, W. Welte, E. Schiltz and G. E. Schulz (1991): Molecular architecture and electrostatic properties of a bacterial porin. Science, 254, 1627–1630.

    Article  Google Scholar 

  • Whitton, B. A., A. M. Al-Shehri, N. T. W. Ellwood and B. L. Turner (2004): Ecological aspects of phosphatase activity in Cyanobacteria, Eukaryotic algae and Bryophytes. p. 205–241. In Organic Phosphorus in the Environment, ed. by B. L. Turner, E. Frossard and D. S. Baldwin, CABI Publishing, Wallingford.

    Google Scholar 

  • Wickett, M. E., K. Caldeira and P. B. Duffy (2003): Effect of horizontal grid resolution on simulations of oceanic CFC-11 uptake and direct injection of anthropogenic CO2. J. Geophys. Res., 108(C6), 3189, doi:10.1029/2001JC001130.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Namiha Yamada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, N., Suzumura, M. Effects of seawater acidification on hydrolytic enzyme activities. J Oceanogr 66, 233–241 (2010). https://doi.org/10.1007/s10872-010-0021-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10872-010-0021-0

Keywords

Navigation