Skip to main content
Log in

Molecular dynamics simulation of water permeation through the alpha-hemolysin channel

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

The alpha-hemolysin (AHL) nanochannel is a non-selective channel that allows for uncontrolled transport of small molecules across membranes leading to cell death. Although it is a bacterial toxin, it has promising applications, ranging from drug delivery systems to nano-sensing devices. This study focuses on the transport of water molecules through an AHL nanochannel using molecular dynamics (MD) simulations. Our results show that AHL can quickly transport water across membranes. The first-passage time approach was used to estimate the diffusion coefficient and the mean exit time. To study the energetics of transport, the potential of mean force (PMF) of a water molecule along the AHL nanochannel was calculated. The results show that the energy barriers of water permeation across a nanopore are always positive along the channel and the values are close to thermal energy (kBT). These findings suggest that the observed quick permeation of water is due to small energy barriers and a hydrophobic inner channel surface resulting in smaller friction. We speculate that these physical mechanisms are important in how AHL causes cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dinges, M.M., Orwin, P.M., Schlievert, P.M.: Exotoxins of Staphylococcus aureus. Clin. Microbiol. Rev. 13(1), 16–34 (2000)

    Article  Google Scholar 

  2. Xiong, Y.Q., Willard, J., Yeaman, M.R., Cheung, A.L., Bayer, A.S.: Regulation of Staphylococcus aureus alpha-toxin gene (hla) expression by agr, sarA, and sae in vitro and in experimental infective endocarditis. J. Infect. Dis. 194(9), 1267–1275 (2006)

    Article  Google Scholar 

  3. Song, L.Z., Hobaugh, M.R., Shustak, C., Cheley, S., Bayley, H., Gouaux, J.E.: Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274(5294), 1859–1866 (1996)

    Article  ADS  Google Scholar 

  4. Gouaux, E.: Alpha-hemolysin from Staphylococcus aureus: an archetype of beta-barrel, channel-forming toxins. J. Struct. Biol. 121(2), 110–122 (1998)

    Article  Google Scholar 

  5. Aksimentiev, A., Schulten, K.: Imaging alpha-hemolysin with molecular dynamics: ionic conductance, osmotic permeability, and the electrostatic potential map. Biophys. J. 88(6), 3745–3761 (2005)

    Article  Google Scholar 

  6. Wong-ekkabut, J., Karttunen, M.: Assessment of common simulation protocols for simulations of nanopores, membrane proteins, and channels. J. Chem. Theor. Comput. 8(8), 2905–2911 (2012)

    Article  Google Scholar 

  7. Cozmuta, I., O’Keeffe, J.T., Bose, D., Stolc, V.: Hybrid MD-Nernst Planck model of alpha-hemolysin conductance properties. Mol. Simul. 31(2-3), 79–93 (2005)

  8. Alouf, J.E., Freer, J.H.: The comprehensive sourcebook of bacterial protein toxins, 2nd edn. Academic Press, London (1999)

    Google Scholar 

  9. Menestrina, G., Dalla Serra, M., Prevost, G.: Mode of action of beta-barrel pore-forming toxins of the staphylococcal alpha-hemolysin family. Toxicon 39(11), 1661–1672 (2001)

    Article  Google Scholar 

  10. Bayley, H.: Pore-forming proteins with built-in triggers and switches. Bioorg. Chem. 23(4), 340–354 (1995)

    Article  Google Scholar 

  11. Bayley, H.: Building doors into cells. Sci. Am. 277(3), 62–67 (1997)

    Article  Google Scholar 

  12. Wanunu, M.: Nanopores: a journey towards DNA sequencing. Phys. Life Rev. 9(2), 125–158 (2012)

    Article  ADS  Google Scholar 

  13. Panchal, R.G., Cusack, E., Cheley, S., Bayley, H.: Tumor protease-activated, pore-forming toxins from a combinatorial library. Nature Biotech. 14(7), 852–856 (1996)

    Article  Google Scholar 

  14. St Jean, A.T., Swofford, C.A., Panteli, J.T., Brentzel, Z.J., Forbes, N.S.: Bacterial delivery of Staphylococcus aureus alpha-hemolysin causes regression and necrosis in murine tumors. Mol. Ther. 22(7), 1266–1274 (2014)

    Google Scholar 

  15. Nakane, J., Wiggin, M., Marziali, A.: A nanosensor for transmembrane capture and identification of single nucleic acid molecules. Biophys. J. 87(1), 615–621 (2004)

    Article  ADS  Google Scholar 

  16. Maglia, G., Restrepo, M.R., Mikhailova, E., Bayley, H.: Enhanced translocation of single DNA molecules through alpha-hemolysin nanopores by manipulation of internal charge. Proc. Natl. Acad. Sci. U. S. A. 105(50), 19720–19725 (2008)

    Article  ADS  Google Scholar 

  17. Ivankin, A., Henley, R.Y., Larkin, J., Carson, S., Toscano, M.L., Wanunu, M.: Label-free optical detection of biomolecular translocation through nanopore arrays. ACS Nano 8(10), 10774–10781 (2014)

    Article  Google Scholar 

  18. Noskov, S.Y., Im, W., Roux, B.: Ion permeation through the alpha-hemolysin channel: theoretical studies based on Brownian dynamics and Poisson-Nernst-Planck electrodiffusion theory. Biophys. J. 87(4), 2299–2309 (2004)

  19. Bhattacharya, S., Muzard, L., Payet, L., Mathe, J., Bockelmann, U., Aksimentiev, A., Viasnoff, V.: Rectification of the current in alpha-hemolysin pore depends on the cation type: the alkali series probed by MD simulations and experiments. J. Phys. Chem. C, Nanomater. Interfaces 115(10), 4255–4264 (2011)

    Article  Google Scholar 

  20. Gu, L.Q., Dalla Serra, M., Vincent, J.B., Vigh, G., Cheley, S., Braha, O., Bayley, H.: Reversal of charge selectivity in transmembrane protein pores by using noncovalent molecular adapters. Proc. Natl. Acad. Sci. U. S. A. 97(8), 3959–3964 (2000)

    Article  ADS  Google Scholar 

  21. Gu, L.Q., Cheley, S., Bayley, H.: Prolonged residence time of a noncovalent molecular adapter, beta-cyclodextrin, within the lumen of mutant alpha-hemolysin pores. J. Gen. Physiol. 118(5), 481–493 (2001)

    Article  Google Scholar 

  22. de Groot, B.L., Grubmuller, H.: Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF. Science 294(5550), 2353–2357 (2001)

    Article  ADS  Google Scholar 

  23. Tajkhorshid, E., Nollert, P., Jensen, M.O., Miercke, L.J., O'Connell, J., Stroud, R.M., Schulten, K.: Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science 296(5567), 525–530 (2002)

    Article  ADS  Google Scholar 

  24. Zhu, F., Tajkhorshid, E., Schulten, K.: Theory and simulation of water permeation in aquaporin-1. Biophys. J. 86(1 Pt 1), 50–57 (2004)

    Article  Google Scholar 

  25. Hummer, G., Rasaiah, J.C., Noworyta, J.P.: Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414(6860), 188–190 (2001)

    Article  ADS  Google Scholar 

  26. Beckstein, O., Sansom, M.S.: Liquid-vapor oscillations of water in hydrophobic nanopores. Proc. Natl. Acad. Sci. U. S. A. 100(12), 7063–7068 (2003)

    Article  ADS  Google Scholar 

  27. Kalra, A., Garde, S., Hummer, G.: Osmotic water transport through carbon nanotube membranes. Proc. Natl. Acad. Sci. U. S. A. 100(18), 10175–10180 (2003)

    Article  ADS  Google Scholar 

  28. Joseph, S., Aluru, N.R.: Why are carbon nanotubes fast transporters of water? Nano Lett. 8(2), 452–458 (2008)

    Article  ADS  Google Scholar 

  29. Cisse, I., Okumus, B., Joo, C., Ha, T.J.: Fueling protein–DNA interactions inside porous nanocontainers. Proc. Natl. Acad. Sci. U. S. A. 104(31), 12646–12650 (2007)

    Article  ADS  Google Scholar 

  30. Holt, J.K., Park, H.G., Wang, Y.M., Stadermann, M., Artyukhin, A.B., Grigoropoulos, C.P., Noy, A., Bakajin, O.: Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312(5776), 1034–1037 (2006)

    Article  ADS  Google Scholar 

  31. Bonthuis, D.J., Horinek, D., Bocquet, L., Netz, R.R.: Electrohydraulic power conversion in planar nanochannels. Phys. Rev. Lett. 103, 144503 (2009)

    Article  ADS  Google Scholar 

  32. Joseph, S., Aluru, N.R.: Pumping of confined water in carbon nanotubes by rotation-translation coupling. Phys. Rev. Lett. 101(6), 064502 (2008)

    Article  ADS  Google Scholar 

  33. Tieleman, D.P., Hess, B., Sansom, M.S.P.: Analysis and evaluation of channel models: simulations of alamethicin. Biophys. J. 83(5), 2393–2407 (2002)

    Article  Google Scholar 

  34. Ni, B., Baumketner, A.: Effect of atom- and group-based truncations on biomolecules simulated with reaction-field electrostatics. J. Mol. Model. 17(11), 2883–2893 (2011)

    Article  Google Scholar 

  35. Wong-Ekkabut, J., Miettinen, M.S., Dias, C., Karttunen, M.: Static charges cannot drive a continuous flow of water molecules through a carbon nanotube. Nature Nanotechnol. 5(8), 555–557 (2010)

    Article  ADS  Google Scholar 

  36. Gong, X.J., Li, J.Y., Lu, H.J., Wan, R.Z., Li, J.C., Hu, J., Fang, H.P.: A charge-driven molecular water pump. Nature Nanotechnol. 2(11), 709–712 (2007)

    Article  ADS  Google Scholar 

  37. Berger, O., Edholm, O., Jahnig, F.: Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys. J. 72(5), 2002–2013 (1997)

    Article  ADS  Google Scholar 

  38. Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T., Tasumi, M.: Protein Data Bank: computer-based archival file for macromolecular structures. J. Mol. Biol. 112(3), 535–542 (1977)

    Article  Google Scholar 

  39. Oostenbrink, C., Villa, A., Mark, A.E., Van Gunsteren, W.F.: A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem. 25(13), 1656–1676 (2004)

    Article  Google Scholar 

  40. Kasianowicz, J.J., Misakian, M.: Electrostatic influence on ion transport through the alpha HL channel. J. Membr. Biol. 195(3), 137–146 (2003)

    Article  Google Scholar 

  41. Tieleman, D.P., Berendsen, H.J.C.: Molecular dynamics simulations of a fully hydrated dipalmitoyl phosphatidylcholine bilayer with different macroscopic boundary conditions and parameters. J. Chem. Phys. 105(11), 4871–4880 (1996)

    Article  ADS  Google Scholar 

  42. Bachar, M., Brunelle, P., Tieleman, D.P., Rauk, A.: Molecular dynamics simulation of a polyunsaturated lipid bilayer susceptible to lipid peroxidation. J. Phys. Chem. B 108(22), 7170–7179 (2004)

    Article  Google Scholar 

  43. Martinez-Seara, H., Rog, T., Karttunen, M., Reigada, R., Vattulainen, I.: Influence of cis double-bond parametrization on lipid membrane properties: how seemingly insignificant details in force-field change even qualitative trends. J. Chem. Phys. 129(10), 105103 (2008)

    Article  ADS  Google Scholar 

  44. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., Hermans, J.: Interaction models for water in relation to protein hydration. In: Pullman, B. (ed.) Intermolecular Forces, pp. 331–342. D. Reidel, Dordrecht (1981)

    Chapter  Google Scholar 

  45. Hess, B., Kutzner, C., van der Spoel, D., Lindahl, E.: GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theor. Comput. 4(3), 435–447 (2008)

    Article  Google Scholar 

  46. Bussi, G., Donadio, D., Parrinello, M.: Canonical sampling through velocity rescaling. J. Chem. Phys. 126(1), 014101 (2007)

    Article  ADS  Google Scholar 

  47. Bussi, G., Zykova-Timan, T., Parrinello, M.: Isothermal-isobaric molecular dynamics using stochastic velocity rescaling. J. Chem. Phys. 130(7), 074101 (2009)

    Article  ADS  Google Scholar 

  48. Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., Pedersen, L.G.: A smooth particle mesh Ewald method. J. Chem. Phys. 103(19), 8577–8593 (1995)

    Article  ADS  Google Scholar 

  49. Darden, T., York, D., Pedersen, L.: Particle mesh Ewald: an N.Log(N) method for Ewald sums in large systems. J. Chem. Phys. 98(12), 10089–10092 (1993)

  50. Karttunen, M., Rottler, J., Vattulainen, I., Sagui, C.: Electrostatics in biomolecular simulations: where are we now and where are we heading? Comput. Model. Membr. Bilayers 60, 49–89 (2008). doi:10.1016/S1063-5823(08)00002-1

    Google Scholar 

  51. Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graph. 14(1), 33–38 (1996)

    Article  Google Scholar 

  52. Borgnia, M.J., Agre, P.: Reconstitution and functional comparison of purified GlpF and AqpZ, the glycerol and water channels from Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 98(5), 2888–2893 (2001)

    Article  ADS  Google Scholar 

  53. Paula, S., Akeson, M., Deamer, D.: Water transport by the bacterial channel alpha-hemolysin. Biochim. Biophys. Acta-Biomembranes 1418(1), 117–126 (1999)

    Article  Google Scholar 

  54. Yeh, I.C., Hummer, G.: Diffusion and electrophoretic mobility of single-stranded RNA from molecular dynamics simulations. Biophys. J. 86(2), 681–689 (2004)

    Article  ADS  Google Scholar 

  55. Guillot, B.: A reappraisal of what we have learnt during three decades of computer simulations on water. J. Mol. Liq. 101(1-3), 219–260 (2002)

    Article  Google Scholar 

  56. Abascal, J.L.F., Vega, C.: A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 123(23), (2005)

  57. Patra, M., Karttunen, M.: Systematic comparison of force fields for microscopic simulations of NaCl in aqueous solutions: diffusion, free energy of hydration, and structural properties. J. Comput. Chem. 25(5), 678–689 (2004)

    Article  Google Scholar 

  58. Zeidel, M.L., Ambudkar, S.V., Smith, B.L., Agre, P.: Reconstitution of functional water channels in liposomes containing purified red cell CHIP28 protein. Biochemistry 31(33), 7436–7440 (1992)

    Article  Google Scholar 

  59. Yang, B., Verkman, A.S.: Water and glycerol permeabilities of aquaporins 1–5 and MIP determined quantitatively by expression of epitope-tagged constructs in Xenopus oocytes. J. Biol. Chem. 272(26), 16140–16146 (1997)

    Article  Google Scholar 

  60. Saparov, S.M., Antonenko, Y.N., Koeppe Ii, R.E., Pohl, P.: Desformylgramicidin: a model channel with an extremely high water permeability. Biophys. J. 79(5), 2526–2534 (2000)

    Article  Google Scholar 

  61. Saparov, S.M., Pohl, P.: Beyond the diffusion limit: water flow through the empty bacterial potassium channel. Proc. Natl. Acad. Sci. U. S. A. 101, 4805–4809 (2004)

    Article  ADS  Google Scholar 

  62. Doyle, D.A., Cabral, J.M., Pfuetzner, R.A., Kuo, A., Gulbis, J.M., Cohen, S.L., Chait, B.T., MacKinnon, R.: The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280(5360), 69–77 (1998)

  63. MacKinnon, R., Cohen, S.L., Kuo, A., Lee, A., Chait, B.T.: Structural conservation in prokaryotic and eukaryotic potassium channels. Science 280(5360), 106–109 (1998)

    Article  ADS  Google Scholar 

  64. Zhu, F.Q., Schulten, K.: Water and proton conduction through carbon nanotubes as models for biological channels. Biophys. J. 85(1), 236–244 (2003)

    Article  Google Scholar 

  65. Beckstein, O., Biggin, P.C., Sansom, M.S.P.: A hydrophobic gating mechanism for nanopores. J. Phys. Chem. B 105(51), 12902–12905 (2001)

    Article  Google Scholar 

  66. Beckstein, O., Sansom, M.S.P.: The influence of geometry, surface character, and flexibility on the permeation of ions and water through biological pores. Phys. Biol. 1(1-2), 42–52 (2004)

    Article  ADS  Google Scholar 

  67. Zhu, F.Q., Tajkhorshid, E., Schulten, K.: Collective diffusion model for water permeation through microscopic channels. Phys. Rev. Lett. 93(22), 238102 (2004)

    Article  Google Scholar 

  68. Redner, S.: A Guide to First-Passage Processes. Cambridge University Press, (2001)

  69. van Hijkoop, V.J., Dammers, A.J., Malek, K., Coppens, M.O.: Water diffusion through a membrane protein channel: a first passage time approach. J. Chem. Phys. 127(8), 085101 (2007)

    Article  ADS  Google Scholar 

  70. Coppens, M.O., Dammers, A.J.: Effects of heterogeneity on diffusion in nanopores—from inorganic materials to protein crystals and ion channels. Fluid Phase Equilibria 241(1-2), 308–316 (2006)

    Article  Google Scholar 

  71. Mashl, R.J., Joseph, S., Aluru, N.R., Jakobsson, E.: Anomalously immobilized water: a new water phase induced by confinement in nanotubes. Nano Lett. 3(5), 589–592 (2003)

    Article  ADS  Google Scholar 

  72. Feenstra, K.A., Hess, B., Berendsen, H.J.C.: Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems. J. Comput. Chem. 20(8), 786–798 (1999)

    Article  Google Scholar 

  73. van der Spoel, D., van Maaren, P.J., Berendsen, H.J.C.: A systematic study of water models for molecular simulation: derivation of water models optimized for use with a reaction field. J. Chem. Phys. 108(24), 10220–10230 (1998)

    Article  Google Scholar 

  74. Striolo, A.: The mechanism of water diffusion in narrow carbon nanotubes. Nano Lett. 6(4), 633–639 (2006)

    Article  ADS  Google Scholar 

  75. Mukherjee, B., Maiti, P.K., Dasgupta, C., Sood, A.K.: Strong correlations and Fickian water diffusion in narrow carbon nanotubes. J. Chem. Phys. 126(12), 124704 (2007)

    Article  ADS  Google Scholar 

  76. Pellegrini, M., Gronbech-Jensen, N., Doniach, S.: Potentials of mean force for biomolecular simulations: theory and test on alanine dipeptide. J. Chem. Phys. 104(21), 8639–8648 (1996)

  77. Marrink, S.J., Berendsen, H.J.C.: Simulation of water transport through a lipid membrane. J. Phys. Chem. 98(15), 4155–4168 (1994)

    Article  Google Scholar 

  78. Marrink, S.J., Berendsen, H.J.C.: Permeation process of small molecules across lipid membranes studied by molecular dynamics simulations. J. Phys. Chem. 100(41), 16729–16738 (1996)

    Article  Google Scholar 

  79. Zuo, G., Shen, R., Ma, S., Guo, W.: Transport properties of single-file water molecules inside a carbon nanotube biomimicking water channel. ACS Nano 4(1), 205–210 (2010)

    Article  Google Scholar 

  80. Jorgensen, W.L., Jenson, C.: Temperature dependence of TIP3P, SPC, and TIP4P water from NPT Monte Carlo simulations: seeking temperatures of maximum density. J. Comput. Chem. 19(10), 1179–1186 (1998)

    Article  Google Scholar 

  81. Vega, C., Abascal, J.L.F.: Simulating water with rigid non-polarizable models: a general perspective. Phys. Chem. Chem. Phys. 13(44), 19663–19688 (2011)

    Article  Google Scholar 

  82. Shirts, M.R., Pitera, J.W., Swope, W.C., Pande, V.S.: Extremely precise free energy calculations of amino acid side chain analogs: comparison of common molecular mechanics force fields for proteins. J. Chem. Phys. 119(11), 5740–5761 (2003)

    Article  ADS  Google Scholar 

  83. Wanunu, M.: Nanopores: past, present and future. Phys. Life Rev. 9(2), 174–176 (2012)

    Article  ADS  Google Scholar 

  84. Braha, O., Walker, B., Cheley, S., Kasianowicz, J.J., Song, L.Z., Gouaux, J.E., Bayley, H.: Designed protein pores as components for biosensors. Chem. Biol. 4(7), 497–505 (1997)

    Article  Google Scholar 

  85. Bayley, H., Braha, O., Gu, L.Q.: Stochastic sensing with protein pores. Adv. Mater. 12(2), 139–142 (2000)

    Article  Google Scholar 

  86. Mathe, J., Aksimentiev, A., Nelson, D.R., Schulten, K., Meller, A.: Orientation discrimination of single-stranded DNA inside the alpha-hemolysin membrane channel. Proc. Natl. Acad. Sci. U. S. A. 102(35), 12377–12382 (2005)

    Article  ADS  Google Scholar 

  87. Ayub, M., Hardwick, S.W., Luisi, B.F., Bayley, H.: Nanopore-based identification of individual nucleotides for direct RNA sequencing. Nano Lett. 13(12), 6144–6150 (2013)

    Article  ADS  Google Scholar 

  88. Maffeo, C., Bhattacharya, S., Yoo, J., Wells, D., Aksimentiev, A.: Modeling and simulation of ion channels. Chem. Rev. 112(12), 6250–6284 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Saree Phongphanphanee (Department of Materials Science, Faculty of Science, Kasetsart University) for helpful discussions. Financial support was provided by the Kasetsart University Research and Development Institute (KURDI) [JW], the Faculty of Science at Kasetsart University [JW], the Graduate School at Kasetsart University [JW] and the Asia Research Center (ARC) at Chulalongkorn University [JW]. Computational resources were provided by SHARCNET (www.sharcnet.ca), Compute Canada and the Department of Physics, Faculty of Science, Kasetsart University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jirasak Wong-ekkabut or Mikko Karttunen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong-ekkabut, J., Karttunen, M. Molecular dynamics simulation of water permeation through the alpha-hemolysin channel. J Biol Phys 42, 133–146 (2016). https://doi.org/10.1007/s10867-015-9396-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-015-9396-x

Keywords

Navigation