Skip to main content
Log in

Mathematical modeling of cascading migration in a tri-trophic food-chain system

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Diel vertical migration is a behavioral antipredator defense that is shaped by a trade-off between higher predation risk in surface waters and reduced growth in deeper waters. The strength of migration of zooplankton increases with a rise in the abundance of predators and their exudates (kairomone). Recent studies span multiple trophic levels, which lead to the concept of coupled vertical migration. The migrations that occur at one trophic level can affect the vertical migration of the next lower trophic level, and so on, throughout the food chain. This is called cascading migration. In this paper, we introduce cascading migration in a well-known model (Hastings and Powell, Ecology 73:896–903, 1991). We represent the dynamics of the system as proposed by Hastings and Powell as a phytoplankton–zooplankton–fish (prey–middle predator–top predator) model where fish affect the migrations of zooplankton, which in turn affect the migrations of motile phytoplankton. The system under cascading migration enhances system stability and population coexistence. It is also observed that for a higher rate of cascading migration, the system shows chaotic behavior. We conclude that the observations of Hastings and Powell remain true if the cascading migration rate is high enough.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Williamson, C.E., Fischer, J.M., Bollens, S.M., Overholt, E.P., Breckenridge, J.K.: Towards a more comprehensive theory of zooplankton diel vertical migration: integrating ultraviolet radiation and water transparency into the biotic paradigm. Limnol. Oceanogr. 56, 1603–1623(2011)

    Article  Google Scholar 

  2. Cohen, J.H., Forward, R.B.: Zooplankton diel vertical migration—a review of proximate control. Oceanogr. Mar. Biol. Annu Rev. 47, 77–109(2009)

    Article  Google Scholar 

  3. Ringelberg, J.: Diel Vertical Migration in Lakes and Oceans: Causal Explanations and Adaptive Significances. Springer, Berlin (2010)

    Book  Google Scholar 

  4. Bollens S.M., Rollwagen-Bollens, G.C., Quenette, J.A., Bochdansky, A.B.: Cascading migrations and implications for vertical fluxes in pelagic ecosystems. J. Plankton Res. 33, 349–355 (2011)

    Article  Google Scholar 

  5. De Meester, L., Dawidowicz, P., Van Gool, E., Loose, C.J. Tollrian, R., Harvell, C.D. (eds.): Ecology and evolution of predator induced behavior of zooplankton: depth selection behavior and diel vertical migration. The Ecology and Evolution of Inducible Defenses, pp. 160–176. Princeton University Press, Princeton (1999)

  6. Dodson, S.I.: The ecological role of chemical stimuli for the zooplankton: predator-avoidance behavior in Daphnia. Limnol. Oceanogr. 33, 1431–1439 (1988)

    Article  Google Scholar 

  7. Gliwicz, M.Z.: Predation and the evolution of vertical migration in zooplankton. Nature 320, 746–748 (1986)

    Article  ADS  Google Scholar 

  8. Lampert, W.: The adaptive significance of diel vertical migration of zooplankton. Funct. Ecol. 3, 21–27 (1989)

    Article  Google Scholar 

  9. Lampert, W.: Ultimate causes of diel vertical migration of zooplankton: new evidence for the predator-avoidance hypothesis. Arch. Hydrol. 39, 79–88 (1993)

    Google Scholar 

  10. Lass, S., Spaak, P.: Chemically induced anti-predator defences in plankton: a review. Hydrobiologia 491, 221–239 (2003)

    Article  Google Scholar 

  11. Loose, C.J., Dawidowicz, P.: Trade-offs in diel vertical migration by zooplankton: The costs of predator avoidance. Ecology 75(8), 2255–2263 (1994)

    Article  Google Scholar 

  12. Neill, W.E.: Induced vertical migration in copepods as a defence against invertebrate predation. Nature 345, 524–526 (1990)

    Article  ADS  Google Scholar 

  13. Stich, H.B., Lampert, W.: Predator evasion as an explanation of diurnal vertical migration by zooplankton. Nature 293, 396–398 (1981)

    Article  ADS  Google Scholar 

  14. Bollens, S.M., Frost, B.W., Cordell, J.R.: Chemical, mechanical, and visual cues in the vertical migration behavior of the marine planktonic copepod Acartia hudsonica. J. Plankton Res. 16, 555–564 (1994)

    Article  Google Scholar 

  15. Cayelan, C.C., Moana, P.C., Sarah, M.C., Angela, M.E., William, W.F., David, C., Nelson, G.H. Jr.: Predator-dependent diel migration by Halocaridina rubra shrimp (Malacostraca: Atyidae) in Hawaiian anchialine pools. Aquat. Ecol. 45, 35–41 (2011)

    Article  Google Scholar 

  16. Bollens, S.M., Frost, B.W.: Predator-induced diel vertical migration in a planktonic copepod. J. Plankton Res. 11, 1047–1065 (1989)

    Article  Google Scholar 

  17. Bollens, S.M., Frost, B.W.: Zooplanktivorous fish and variable diel vertical migration in the marine planktonic copepod Calanus pacificus. Limnol. Oceanogr. 34, 1072–1083 (1989)

    Article  Google Scholar 

  18. Hays, G.C.: A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations. Hydrobiologia 503, 163–170 (2003)

    Article  Google Scholar 

  19. Eppley, R.W., Holm-Harisen, O., Strickland, J.D.H.: Some observations of the vertical migration of marine dinoflagellates. J. Phycol. 4, 333–340 (1968)

    Article  Google Scholar 

  20. Blasco, D.: Observations on the diel migration of marine dinoflagellates off the Baja California coast. Mar. Biol. 46, 41–47 (1978)

    Article  Google Scholar 

  21. Kamykowski, D., Milligan, E.J., Reed, R.E.: Relationships between geotaxis/phototaxis and diel vertical migration in autotrophic dinoflagellates. J. Plankton Res. 20, 1781–1796 (1998)

    Article  Google Scholar 

  22. Park, J.G., Jeong, M.K., Lee, J.A. et al.: Diurnal vertical migration of a harmful dinoflagellate, Cochlodinium polykrikoides (Dinophyceae), during a red tide in coastal waters of Namhae Island, Korea. Phycologia 40, 292–297 (2001)

    Article  Google Scholar 

  23. Schofield, O., Kerfoot, J., Mahoney, K.: Vertical migration of the toxic dinoflagellate Karenia brevis and the impact on ocean optical properties. J. Geophys. Res. Oceans 111, C06009 (2006). doi:10.1029/2005JC003115

    Article  ADS  Google Scholar 

  24. Cullen, J.J., Horrigan, S.G.: Effects of nitrate on the diurnal vertical migration, carbon to nitrogen ratio, and the photosynthetic capacity of the dinoflagellate Gymnodinium splendens. Mar. Biol. 62, 81–89 (1981)

    Article  Google Scholar 

  25. Doblin, M.A., Thompson, P.A., Revill, A.T., Butler, E.C.V., Blackburn, S.I., Hallengraeff, G.M.: Vertical migration of the toxic dinoflagellate Gymnodinium catenatum under different concentrations of nutrients and humic substances in culture. Harmful Algae 5, 665–677 (2006)

    Article  Google Scholar 

  26. Erga, S.R., Dybwad, M., Frette, Ø., Lotsberg, J.K., Aursland, K.: New aspects of migratory behavior of phytoplankton in stratified waters: effects of halocline strength and light on Tetraselmis sp. (Prasinophyceae) in an artificial water column. Limnol. Oceanogr. 48, 1202–1213 (2003)

    Google Scholar 

  27. Heaney, S.I., Furnass, T.I.: Laboratory models of diel vertical migration in the dinoflagellate Ceratium hirundinella. Freshwater Biol. 10, 163–170 (1980)

    Article  Google Scholar 

  28. Jephson, T., Carlsson, P.: Species and stratification dependent diel vertical migration behaviour of three dinoflagellate species in a laboratory study. J. Plankton Res. 31, 1353–1362 (2009)

    Article  Google Scholar 

  29. MacIntyre, J.G., Cullen, J.J., Cembella, A.D.: Vertical migration, nutrition and toxicity in the dinoflagellate Alexandrium tamarense. Mar. Ecol. Prog. Ser. 148, 201–216 (1997)

    Article  Google Scholar 

  30. Schaeffer, B.A., Kamykowski, D., McKay, L.: Lipid class, carotenoid, and toxin dynamics of Karenia brevis (Dinophyceae) during diel vertical migration. J. Phycol. 45, 154–163 (2009)

    Article  Google Scholar 

  31. Bollens, S.M., Quenette, J., Rollwagen-Bollens, G.C.: Predator-enhanced diel vertical migration in a planktonic dinoflagellate. Mar. Ecol. Prog. Ser. 447, 49–54 (2012). doi:10.3354/meps09467

    Article  Google Scholar 

  32. Hays G.C., Farquhar, M.R., Luschi, P., Teo, S.L.H., Thys, T.M.: Vertical niche overlap by two ocean giants with similar diets: oceanic sunfish and leatherback turtles. J. Exp. Mar. Biol. Ecol. 370, 134–143 (2009)

    Article  Google Scholar 

  33. Sims, D.W., Southall, E.J., Tarling, G.A.: Habitat-specific normal and reverse diel vertical migration in the plankton-feeding basking shark. J. Anim. Ecol. 74, 755–761 (2005)

    Article  Google Scholar 

  34. Sims, D.W., Queiroz, N., Doyle, T.K.: Satellite tracking of the world’s largest bony fish, the ocean sunfish (Mola mola L.) in the North East Atlantic. J. Exp. Mar. Biol. Ecol. 370, 127–133 (2009)

    Article  Google Scholar 

  35. Hastings, A., Powell, T.: Chaos in a three-species food chain. Ecology 73, 896–903 (1991)

    Article  Google Scholar 

  36. Ruxton, G.D.: Low levels of immigration between chaotic populations can reduce system extinctions by inducing asynchronous cycles. Proc. R. Soc. Lond. Ser. B 256, 189–193 (1994)

    Article  ADS  Google Scholar 

  37. Ruxton, G.D.: Chaos in a three-species food chain with a lower bound on the bottom population. Ecology 77(1), 317–319 (1996)

    Article  Google Scholar 

  38. Eisenberg, J.N., Maszle, D.R.: The structural stability of a three species food chain model. J. Theor. Biol. 176, 501–510 (1995)

    Article  Google Scholar 

  39. McCann, K., Hastings, A.: Re-evaluating the omnivory-stability relationship in food webs. Proc. R. Soc. Lond. B 264, 1249–1254 (1997)

    Article  ADS  Google Scholar 

  40. Xu, C., Li, Z.: Influence of intraspecific density dependence on a three-species food chain with and without external stochastic disturbances. Ecol. Model. 155, 71–83 (2002)

    Article  Google Scholar 

  41. Chattopadhyay, J., Sarkar, R.R.: Chaos to order: preliminary experiments with a population dynamics models of three trophic levels. Ecol. Model. 163, 45–50 (2003)

    Article  Google Scholar 

  42. Maionchi, D.O., dos Reis, S.F., de Aguiar M.A.M.: Chaos and pattern formation in a spatial tritrophic food chain. Ecol. Model. 191, 291–303 (2005)

    Article  Google Scholar 

  43. Bandyopadhyay, M., Chatterjee, S., Chakraborty, S., Chattopadhyay J.: Density dependent predator death prevalence chaos in a tri-trophic food chain model. Nonlinear Anal. Model. Control 13, 305–324 (2008)

    MathSciNet  MATH  Google Scholar 

  44. Das, K.P., Chatterjee, S., Chattopadhyay, J.: Disease in prey population and body size of intermediate predator reduce the prevalence of chaos-conclusion drawn from Hastings–Powell model. Ecol. Complex. 6, 363–374 (2009)

    Article  Google Scholar 

  45. Chowdhury, T., Chakraborty, S., Chattopadhyay, J.: Migratory effect of middle predator in a tri-trophic food chain model. Math. Methods Appl. Sci. 33, 1699–1711 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Auger, P., Benoit, E.: A prey–predator model in a multi-patch environment with different time scales. J. Biol. Syst. 1(2), 187–197 (1993)

    Article  Google Scholar 

  47. Auger, P., Poggiale, J.C.: Emergence of population growth models: fast migration and slow growth. J. Theor. Biol. 182, 99–108 (1996)

    Article  Google Scholar 

  48. Auger, P., Bravo de la Parra, R.: Methods of aggregation of variables in population dynamics. C. R. Acad. Sci. Paris, Sciences de la vie 323, 665–674 (2000)

    Google Scholar 

  49. Auger, P., Charles, S., Viala, M., Poggiale, J.C.: Aggregation and emergence in ecological modelling: integration of the ecological levels. Ecol. Model. 127, 11–20 (2000)

    Article  Google Scholar 

  50. Michalski, J., Poggiale, J.C., Arditi, R., Auger, P.: Macroscopic dynamic effects of migrations in patchy predator–prey systems. J. Theor. Biol. 185, 459–474 (1997)

    Article  Google Scholar 

  51. Hays, G.C., Doyle, T.K., Houghton, J.R., Lilley, M.K.S., Metcalfe, J.D., Righton, D.: Diving behaviour of jellyfish equipped with electronic tags. J. Plankton Res. 30, 325–331 (2008)

    Article  Google Scholar 

  52. Birkhoff, G., Rota, G.C.: Ordinary Differential Equations. Ginn, Boston (1982)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the reviewers for their useful comments on the previous version of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Chattopadhyay.

Additional information

The research work is supported by the Council of Scientific and Industrial Research (CSIR), Human Resource Development Group, New Delhi.

Appendix

Appendix

1.1 Appendix A: Proof of Theorem 1

Let us define a function

$$ \begin{array}{lll} W&=&x+y+z. \end{array} \label{EQ:eqn9} $$
(11)

The time derivative of Eq. (9) along with the solution of (8) is

$$ \begin{array}{rll} \frac{d W}{dt}&=&\frac{d x}{d t}+\frac{d y}{d t}+\frac{d z}{d t}=r\left(1-\frac{x}{\widetilde{K}}\right)-d_1 y-d_2 z\\ &\Rightarrow& \frac{dW}{dt}+\mu W=rx\left(1+\frac{\mu}{r}-\frac{x}{\widetilde{K}}\right)-(d_1-\mu)y-(d_2-\mu)z\\ &\leq& \frac{(r+\mu)^2\widetilde{K}}{4 r}=L ~(say), \end{array} $$

where μ ≤ min{d 1,d 2}.

Applying the theorem of differential inequality [52], we obtain \(0 \leq W(x,y,z) \leq {L}/{\mu(1-e^{-\mu t})}+W(x_0,y_0,z_0)e^{-\mu t}\), which implies that 0 ≤ W ≤ L/μ as t → ∞. Hence, all the solutions of (8), that initiate in \(R^3_+-\{0\},\) are confined in the region \(B=\{(x,y,z)\in R^3_+: W=L/\mu+\epsilon \}\).

1.2 Appendix B: Proof of Theorem 2

For m = m *, we can write the characteristic equation

$$ \lambda^3+\Sigma_1 \lambda^2+\Sigma_2 \lambda+\Sigma_3=0 $$

as

$$ (\lambda^2+\Sigma_2)(\lambda+\Sigma_1), $$

which has three roots \(\lambda_1=i\sqrt{\Sigma_2}\), \(\lambda_2=-i\sqrt{\Sigma_2}\) and λ 3 = − Σ1.

For all m, the roots are in general of the form

$$ \begin{array}{rll} \lambda_1(m)&=&\phi_1(m)+i\phi_2(m),\\ \lambda_2(m)&=&\phi_1(m)-i\phi_2(m),\\ \lambda_3(m)&=&-\Sigma_1. \end{array} $$

Now, we shall verify the transversality condition

$$ \frac{d}{d m}(Re(\lambda(m)))\mid_{~m=m^*} \neq 0, ~~~j=1,2. $$

Substituting λ j (m) = φ 1(m) +  2(m) into the characteristic equation and calculating the derivative, we have

$$ \begin{array}{rll} P(m)\phi_1'(m)-Q(m)\phi_2'(m)+U(m)&=&0,\\ Q(m)\phi_1'(m)+P(m)\phi_2'(m)+V(m)&=&0, \end{array} $$

where

$$ \begin{array}{rll} P(m)&=&3 \phi_1^2(m)+2\Sigma_1(m)\phi_1(m)+\Sigma_2(m)-3 \phi_2^2(m),\\ Q(m)&=&6 \phi_1(m)\phi_2(m)+2 \Sigma_1(m)\phi_2(m),\\ U(m)&=&\phi_1^2(m)\Sigma_1'(m)+\Sigma_2'(m)\phi_1(m)+\Sigma_3'(m)-\Sigma_1'(m)\phi_2^2(m),\\ V(m)&=&2\phi_1(m)\phi_2(m)\Sigma_1'(m)+\Sigma_2'(m)\phi_2(m). \end{array} $$

Noticing that \(\phi_1(m^*)=0\), \(\phi_2(m^*)=\sqrt{\Sigma_2(m^*)}\), we have

$$ \begin{array}{rll} P(m^*)&=&-2\Sigma_2(m^*), Q(m^*)=2\Sigma_1(m^*) \sqrt{\Sigma_2(m^*)}, \\ U(m^*)&=&\Sigma_3'(m^*)-\Sigma_1'(m^*)\Sigma_2(m^*) \end{array} $$

and \(V(m^*)=\Sigma_2'(m^*)\sqrt{\Sigma_2(m^*)}\). Now,

$$ \begin{array}{lll} &&{\kern-10pt}\dfrac{d}{d m}(Re(\lambda(m)))\mid_{~m=m^*} \\ &&= \dfrac{Q(m^*)V(m^*)+P(m^*)U(m^*)}{P(m^*)^2+Q(m^*)^2}\\ &&= \dfrac{2\Sigma_1(m^*) \sqrt{\Sigma_2(m^*)} \times \Sigma_2'(m^*)\sqrt{\Sigma_2(m^*)} + (-2\Sigma_2(m^*))(\Sigma_3'(m^*)-\Sigma_1'(m^*)\Sigma_2(m^*))}{(-2\Sigma_2(m^*))^2 + (2\Sigma_1(m^*) \sqrt{\Sigma_2(m^*)})^2}\\ &&=\dfrac{\Sigma_1(m^*)\Sigma_2'(m^*)-\Sigma_3'(m^*)+\Sigma_1'(m^*)\Sigma_2(m^*)}{2(\Sigma_2(m^*)+(\Sigma_1(m^*))^2)} \\ &&\neq 0, ~~if ~\Sigma_1(m^*)\Sigma_2'(m^*)-\Sigma_3'(m^*)+\Sigma_1'(m^*)\Sigma_2(m^*) \neq 0, \nonumber \end{array} \label{EQ:eqn9} $$

and \(\lambda_3(m^*)=-\Sigma_1(m^*) \neq 0\).

Therefore, the transversality conditions hold. This implies that a Hopf bifurcation occurs at m = m *, hence the theorem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samanta, S., Chowdhury, T. & Chattopadhyay, J. Mathematical modeling of cascading migration in a tri-trophic food-chain system. J Biol Phys 39, 469–487 (2013). https://doi.org/10.1007/s10867-013-9311-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-013-9311-2

Keywords

Navigation