Skip to main content
Log in

The influence of millimeter waves on the physical properties of large and giant unilamellar vesicles

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Exposure of cell membranes to an electromagnetic field (EMF) in the millimeter wave band (30–300 GHz) can produce a variety of responses. Further, many of the vibrational modes in complex biomolecules fall in the 1–100 GHz range. In addition to fundamental scientific interest, this may have applications in the development of diagnostic and therapeutic medical applications. In the present work, lipid vesicles of different size were used to study the effects of exposure to radiation at 52–72 GHz, with incident power densities (IPD) of 0.0035–0.010 mW/cm2, on the chemical-physical properties of cell membranes. Large unilamellar vesicles (LUVs) were used to study the effect of the radiation on the physical stability of vesicles by dynamic light scattering. An inhibition of the aging processes (Ostwald ripening), which usually occur in these vesicles because of their thermodynamic instability, resulted. Giant unilamellar vesicles (GUVs) were used to study the effect of the radiation on membrane water permeability under osmotic stress by phase contrast microscopy. In this case, a decrease in the water membrane permeability of the irradiated samples was observed. We advance the hypothesis that both the above effects may be explained in terms of a change of the polarization states of water induced by the radiation, which causes a partial dehydration of the membrane and consequently a greater packing density (increased membrane rigidity).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pakhomov, A.G., Akyel, Y., Pakhomova, O.N., Stuck, B.E., Murphy, M.R.: Current state and implications of research on biological effects of millimeter waves: a review of the literature. Bioelectromagnetics 19, 393–413 (1998)

    Article  Google Scholar 

  2. Ramundo-Orlando, A.: Effects of millimeter waves radiation on cell membrane—a brief review. J. Infrared Milli. Terahz. Waves 31, 1400–1411 (2010)

    Article  Google Scholar 

  3. Zhadobov, M., Chahat, N., Sauleau, R., Le Quement, C., Le Drean, Y.: Millimeter-wave interactions with the human body: state of knowledge and recent advances. Int. J. Microw. Wirel. Technol. 3, 237–247 (2011)

    Article  Google Scholar 

  4. Pakhomov, A.G., Mathur, S.P., Doyle, J., Stuck, B.E., Kiel, J.L., Murphy, M.R.: Comparative effects of extremely high power microwave pulses and a brief CW irradiation on pacemaker function in isolated frog heart slices. Bioelectromagnetics 21, 245–54 (2000)

    Article  Google Scholar 

  5. Rojavin, M.A., Radzievsky, A.A., Cowan, A., Ziskin, M.C.: Pain relief caused by millimeter waves in mice: results of cold water tail flick tests. Int. J. Radiat. Biol. 76, 575–579 (2000)

    Article  Google Scholar 

  6. Radzievsky, A.A., Gordiienko, O.V., Szabo, I., Alekseev, S.I., Ziskin, M.C.: Millimeter wave-induced suppression of B16 F10 melanoma growth in mice: involvement of endogenous opioids. Bioelectromagnetics 25, 466–73 (2004)

    Article  Google Scholar 

  7. Globus, T.R. Woolard, D.L., Khromova, T., Crowe, T.W., Bykhovskaia, M., Gelmont, B.L., Hesler, J., Samuels, A.C.: THz-spectroscopy of biological molecules. J. Biol. Phys. 29, 89–100 (2003)

    Article  Google Scholar 

  8. Beneduci, A.: Which is the effective time scale of the fast Debye relaxation process in water? J. Mol. Liq. 138, 55–60 (2008)

    Article  Google Scholar 

  9. Beneduci, A., Chidichimo, G.: Open-ended waveguide measurement and numerical simulation of the reflectivity of Petri dish supported skin cell monolayers in the mm-wave range. J. Infrared Milli. Terahz. Waves 33, 529–547 (2012)

    Article  Google Scholar 

  10. Ellison, W.J.: Permittivity of pure water, at standard atmospheric pressure, over the frequency range 0.25 THz and the temperature range 0–100 °C. J. Phys. Chem. Ref. Data 36, 1–18 (2007)

    Article  ADS  Google Scholar 

  11. Ronne, C., Keiding, S.R.: Low-frequency spectroscopy of liquid water using THz.time domain spectroscopy. J. Mol. Liq. 101, 199–218 (2002)

    Article  Google Scholar 

  12. Jepsen, P.U., Merbold, H.: Terahertz reflection spectroscopy of aqueous NaCl and LiCl solutions. J. Infrared Milli. Terahz. Waves 31, 430–440 (2010)

    Google Scholar 

  13. Cifra, M., Fields, J.Z., Farhadi, A.: Electromagnetic cellular interactions. Prog. Biophys. Mol. Biol. 105, 223–246 (2011)

    Article  Google Scholar 

  14. ICNIRP: Guidelines for limiting exposure to time varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys. 74, 494–522 (1998)

    Google Scholar 

  15. IEEE: IEEE standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz. C95-1 (2005)

  16. Zhadobov, M., Sauleau, R., Le Drean, Y., Alekseev, S.I., Ziskin, M.C.: Numerical and experimental millimeter-wave dosimetry for in vitro experiments. IEEE Trans. Microw. Theory Tech. 56, 2998–3007 (2008)

    Article  ADS  Google Scholar 

  17. Ramundo-Orlando, A., Longo, G., Cappelli, M., Girasole, M., Tarricone, L., Beneduci, A., Massa, R.: The response of giant phospholipid vesicles to millimeter waves radiation. Biochim. Biophys. Acta 1788, 1497–1507 (2009)

    Article  Google Scholar 

  18. Beneduci, A., Filippelli, L., Cosentino, K., Calabrese, M.L., Massa, R., Chidichimo, G.: Microwave-induced shift of the main phase transition in phosphatidylcholine membranes. Bioelectrochemistry 84, 18–24 (2012)

    Article  Google Scholar 

  19. Armengol, X., Estelrich, J.: Physical stability of different liposome compositions obtained by extrusion method. J. Microencapsul. 12, 525–535 (1995)

    Article  Google Scholar 

  20. Madani, E.W., Kaler, H.: Aging and stability of vesicular dispersions. Langmuir 6, 125–132 (1990)

    Article  Google Scholar 

  21. Zhdanov, V.P., Kasemo, B.: Lipid-diffusion-limited kinetics of vesicle growth. Langmuir 16, 7352–7354 (2000)

    Article  Google Scholar 

  22. Olsson, U., Wennerström, H.: On the ripening of vesicle dispersions. J. Phys. Chem. B 106, 5135–5138 (2002)

    Article  Google Scholar 

  23. Oglęcka, K., Sanborn, J., Parikh A.N., Kraut R.S.: Osmotic gradients induce bio-reminiscent morphological transformations in giant unilamellar vesicles. Front Physiol. 3, 1–11 (2012)

    Google Scholar 

  24. Raphael, R., Waugh, R.: Accelerated interleaflet transport of phosphatidylcholine molecules in membranes under deformation. Biophys. J. 71, 1374–1388 (1996)

    Article  ADS  Google Scholar 

  25. Dimova, R., Riske, K.A., Aranda, S., Bezlyepkina, N., Knorr, R.L., Lipowsky, R.: Giant vesicles in electric fields. Soft Matter 3, 817–827 (2007)

    Article  ADS  Google Scholar 

  26. Dimova, R., Bezlyepkina, N., Jordo, M.D., Knorr, R.L., Riske, K.A., Staykova, M., Vlahovska, P.M., Yamamoto, T., Yang, P., Lipowsky, R.: Vesicles in electric fields: some novel aspects of membrane behavior. Soft Matter 5, 3201–3212 (2009)

    Article  ADS  Google Scholar 

  27. Hope, M.J., Bally, M.B., Webb, G., Cullis, P.R.: Production of large unilamellar vesicles by a rapid extrusion procedure. Characterization of size distribution, trapped volume and ability to maintain a membrane potential. Biochim. Biophys. Acta 812, 55–65 (1985)

    Article  Google Scholar 

  28. Mayer, L.D., Hope, M.J., Cullis, P.R.: Vesicle of various sizes produced by a rapid extrusion procedure. Biochem. Biophys. Acta 858, 161–168 (1986)

    Article  Google Scholar 

  29. Huster, D., Jin, A.J., Arnold, K., Gawrisch, K.: Water permeability of polyunsaturated lipid membranes measured by 17O NMR. Biophys. J. 73, 855–64 (1997)

    Article  Google Scholar 

  30. MacDonald, R.C., et al.: Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim. Biophys. Acta 1061, 297–303 (1991)

    Article  Google Scholar 

  31. Angelova, M.I.: Liposome electroformation. In: Luisi, P.L., Walde, P. (eds.) Giant Vesicles. Perspectives in Supramolecular Chemistry, vol. 6, pp. 27–36. Wiley, Chichester (2000)

    Google Scholar 

  32. Bucher, P., Fischer, A., Luisi, P.L., Oberholzer, T., Walde, P.: Giant vesicles as biochemical compartments: the use of microinjection techniques. Langmuir 14, 2712–2721 (1998)

    Article  Google Scholar 

  33. Lande, M.B., Donovan, J.M., Zeidel, M.L. The relationship between membrane fluidity and permeabilities to water, solutes, ammonia, and protons. J. Gen. Physiol. 106, 67–84 (1995)

    Article  Google Scholar 

  34. Walde, P.: Preparation of vesicles (liposomes). In: Nalwa, H. S. (ed.) Encyclopedia of Nanoscience and Nanotechnology, vol. 9, pp. 43–79. American Scientific Publishers, Los Angeles (2004)

    Google Scholar 

  35. Cantor, R.S.: Lipid composition and the lateral pressure profile in bilayers. Biophys. J. 76, 2625–2639 (1999)

    Article  ADS  Google Scholar 

  36. Zhadobov, M., et al.: Interactions between 60-GHz millimeter waves and artificial biological membranes: dependence on radiation parameters. Microw. Theory Tech. IEEE Trans. 54, 2534–2542 (2006)

    Article  ADS  Google Scholar 

  37. Koenig, B.W., Strey, H.H., Gawrisch, K.: Membrane lateral compressibility determined by NMR and X-ray diffraction: effect of acyl chain polyunsaturation. Biophys. J. 73, 1954–1966 (1997)

    Article  Google Scholar 

  38. Faure, C., Bonakdar, L., Dufourc, E.J.: Determination of DMPC hydration in the L(alpha) and L(beta’) phases by 2H solid state NMR of D2O. FEBS Lett. 405, 263–266 (1997)

    Article  Google Scholar 

  39. Moazezi, Z., Hojjati, S.M.M., Ayrapetyan, S.: Low-intensity millimeter wave as a potential tool in treatment of diabetic sensorymotor polyneuropathy. Int. Dent. Med. Disord. 1, 50–55 (2008)

    Google Scholar 

  40. Alekseev, S.I., Ziskin, M.C.: Distortion of MMW absorption in biological media due to presence of thermocouples and other objects. IEEE Trans. Biomed. Eng. 48, 1013–1019 (2000)

    Article  Google Scholar 

  41. Khizhnyak, E.P., Ziskin, M.C.: Temperature oscillations in liquid media caused by continuous (nonmodulated) millimeter wavelength electromagnetic irradiation. Bioelectromagnetics 17, 223–229 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

K.C. would like to thank Prof. Peter Walde (ETH, Zurich) for very helpful discussions of the experiments and his support of this work. K.C. acknowledges the financial support from Regione Calabria and Università della Calabria, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katia Cosentino.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(TIF 7.17 MB)

(TIF 7.08 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cosentino, K., Beneduci, A., Ramundo-Orlando, A. et al. The influence of millimeter waves on the physical properties of large and giant unilamellar vesicles. J Biol Phys 39, 395–410 (2013). https://doi.org/10.1007/s10867-012-9296-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-012-9296-2

Keywords

Navigation