Skip to main content
Log in

Lewis-inspired representation of dissociable water in clusters and Grotthuss chains

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Proton transfer to and from water is critical to the function of water in many settings. However, it has been challenging to model. Here, we present proof-of-principle for an efficient yet robust model based on Lewis-inspired submolecular particles with interactions that deviate from Coulombic at short distances to take quantum effects into account. This “LEWIS” model provides excellent correspondence with experimental structures for water molecules and water clusters in their neutral, protonated and deprotonated forms; reasonable values for the proton affinities of water and hydroxide; a good value for the strength of the hydrogen bond in the water dimer; the correct order of magnitude for the stretch and bend force constants of water; and the expected time course for Grotthuss transport in water chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agmon, N.: Proton solvation and proton mobility. Isr. J. Chem. 39, 493 (1999)

    Google Scholar 

  2. Nagle, J.F., Morowitz, H.J.: Molecular mechanisms for proton transport in membranes. Proc. Natl. Acad. Sci. U. S. A. 75, 298 (1978)

    Article  ADS  Google Scholar 

  3. Careri, G.: Cooperative charge fluctuations by migrating protons in globular proteins. Prog. Biophys. Mol. Biol. 70, 223 (1998)

    Article  Google Scholar 

  4. Decoursey, T.E.: Voltage-gated proton channels and other proton transfer pathways. Physiol. Rev. 83, 475 (2003)

    Google Scholar 

  5. Stillinger, F.H., David, C.W.: Polarization model for water and its ionic dissociation products. J. Chem. Phys. 69, 1473 (1978)

    Article  ADS  Google Scholar 

  6. Halley, J.W., Rustad, J.R., Rahman, A.: A polarizable, dissociating molecular-dynamics model for liquid water. J. Chem. Phys. 98, 4110 (1993)

    Article  ADS  Google Scholar 

  7. David, C.W.: A variable charge central force model for water and its ionic dissociation products. J. Chem. Phys. 104, 7255 (1996)

    Article  ADS  Google Scholar 

  8. Lussetti, E., Pastore, G., Smargiassi, E.: A fully polarizable and dissociable potential for water. Chem. Phys. Lett. 381, 287 (2003)

    Article  ADS  Google Scholar 

  9. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L.: Comparison of Simple Potential Functions for simulating liquid water. J. Chem. Phys. 79, 926 (1983)

    Article  ADS  Google Scholar 

  10. Mahoney, M.W., Jorgensen, W.L.: A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. J. Chem. Phys. 112, 8910 (2000)

    Article  ADS  Google Scholar 

  11. Berendsen, H.J.C., Postma, J.P.M., van Gusteren, W.F., Hermans, J.: Interaction models for water in relation to protein hydration. In: Intermolecular Forces, pp. 331–342. Reidel, Dordrecht (1981)

  12. Berendsen, H.J.C., Grigera, J.R., Straatsma, T.P.: The missing term in effective pair potentials. J. Phys. Chem. 91, 6269 (1987)

    Article  Google Scholar 

  13. Guillot, B.: A reappraisal of what we have learnt during three decades of computer simulations on water. J. Mol. Liq. 101, 219 (2002)

    Article  Google Scholar 

  14. Warshel, A., Weiss, R.M.: An empirical valence bond approach for comparing reactions in solutions and in enzymes. J. Am. Chem. Soc. 102, 6218 (1980)

    Article  Google Scholar 

  15. Cuma, M., Schmitt, U.W., Voth, G.A.: A multi-state empirical valence bond model for acid-base chemistry in aqueous solution. Chem. Phys. 258, 187 (2000)

    Article  Google Scholar 

  16. Dellago, C., Hummer, G.: Kinetics and mechanism of proton transport across membrane nanopores. Phys. Rev. Lett. 97, 245901 (2006)

    Article  ADS  Google Scholar 

  17. Xu, J.C., Voth, G.A.: Computer simulation of explicit proton translocation in cytochrome c oxidase: the D-pathway. Proc. Natl. Acad. Sci. U. S. A. 102, 6795 (2005)

    Article  ADS  Google Scholar 

  18. Lemberg, H.L., Stillinger, F.H.: Central-force model for liquid water. J. Chem. Phys. 62, 1677 (1975)

    Article  ADS  Google Scholar 

  19. Stillinger, F.H., Rahman, A.: Revised central force potentials for water. J. Chem. Phys. 68, 666 (1978)

    Article  ADS  Google Scholar 

  20. Weber, T.A., Stillinger, F.H.: Reactive collisions of H3O+ and OH- Studied with the polarization model. J. Phys. Chem. 86, 1314 (1982)

    Article  Google Scholar 

  21. Pomes, R., Roux, B.: Theoretical study of H+ translocation along a model proton wire. J. Phys. Chem. 100, 2519 (1996)

    Article  Google Scholar 

  22. Pomes, R., Roux, B.: Free energy profiles for H+ conduction along hydrogen-bonded chains of water molecules. Biophys. J. 75, 33 (1998)

    Article  ADS  Google Scholar 

  23. Lewis, G.N.: The atom and the molecule. J. Am. Chem. Soc. 38, 762 (1916)

    Article  Google Scholar 

  24. Owicki, J.C., Shipman, L.L., Scheraga, H.A.: Structure, energetics, and dynamics of small water clusters. J. Phys. Chem. 79, 1794 (1975)

    Article  Google Scholar 

  25. Snir, J., Nemenoff, R.A., Scheraga, H.A.: Revised empirical potential for conformational, intermolecular, and solvation studies .1. Evaluation of problem and description of model. J. Phys. Chem. 82, 2497 (1978)

    Article  Google Scholar 

  26. Nemenoff, R.A., Snir, J., Scheraga, H.A.: Revised empirical potential for conformational, intermolecular, and solvation studies. 2. Parameterization and testing for water and saturated organic-molecules. J. Phys. Chem. 82, 2504 (1978)

    Article  Google Scholar 

  27. Koide, A.: A new expansion for dispersion forces and its application. J. Phys. B: At. Mol. Phys. 9, 3173 (1976)

    Article  ADS  Google Scholar 

  28. Metropolis, N., Ulam, S.: The Monte Carlo method. J. Am. Stat. Assoc. 44, 335 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  29. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculations by fast computing machines. J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

  30. Frenkel, D., Smit, B.: Understanding Molecular Simulation from Algorithms to Applications. Academic Press, San Diego (2002)

    Google Scholar 

  31. Jorgensen, W.L., Tirado-Rives, J.: Molecular modeling of organic and biomolecular systems using BOSS and MCPRO. J. Comput. Chem. 26, 1689 (2005)

    Article  Google Scholar 

  32. Swope, W.C., Andersen, H.C., Berens, P.H., Wilson, K.R.: A computer-simulation method for the calculation of equilibrium-constants for the formation of physical clusters of molecules - application to small water clusters. J. Chem. Phys. 76, 637 (1982)

    Article  ADS  Google Scholar 

  33. Jensen, P.: The potential-energy surface for the electronic ground-state of the water molecule determined from experimental-data using a variational approach. J. Mol. Spectrosc. 133, 438 (1989)

    Article  ADS  Google Scholar 

  34. Hunter, E.P.L., Lias, S.G.: Evaluated gas phase basicities and proton affinities of molecules: an update. J. Phys. Chem. Ref. Data 27, 413 (1998)

    Article  ADS  Google Scholar 

  35. Sears, T.J., Bunker, P.R., Davies, P.B., Johnson, S.A., Spirko, V.: Diode-laser absorption-spectroscopy of D3O+ - determination of the equilibrium structure and potential function of the oxonium ion. J. Chem. Phys. 83, 2676 (1985)

    Article  ADS  Google Scholar 

  36. Owrutsky, J.C., Rosenbaum, N.H., Tack, L.M., Saykally, R.J.: The vibration-rotation spectrum of the hydroxide anion (OH-). J. Chem. Phys. 83, 5338 (1985)

    Article  ADS  Google Scholar 

  37. Dewar, M.J.S., Dieter, K.M.: Evaluation of Am1 calculated proton affinities and deprotonation enthalpies. J. Am. Chem. Soc. 108, 8075 (1986)

    Article  Google Scholar 

  38. Lide, D.R.: CRC Handbook of Chemistry and Physics, 76th edn. CRC Press, Boca Raton (1995)

    Google Scholar 

  39. Bartmess, J.E., Scott, J.A., Mciver, R.T.: Scale of acidities in the gas-phase from methanol to phenol. J. Am. Chem. Soc. 101, 6046 (1979)

    Article  Google Scholar 

  40. Odutola, J.A., Dyke, T.R.: Partially deuterated water dimers - microwave-spectra and structure. J. Chem. Phys. 72, 5062 (1980)

    Article  ADS  Google Scholar 

  41. Fridgen, T.D., McMahon, T.B., MacAleese, L., Lemaire, J., Maitre, P.: Infrared spectrum of the protonated water dimer in the gas phase. J. Phys. Chem., A. 108, 9008 (2004)

    Article  Google Scholar 

  42. Samson, C.C.M., Klopper, W.: Ab initio calculation of proton barrier and binding energy of the (H2O)OH- complex. J. Mol. Struct., THEOCHEM 586, 201 (2002)

    Article  Google Scholar 

  43. Xantheas, S.S.: On the importance of the fragment relaxation energy terms in the estimation of the basis set superposition error correction to the intermolecular interaction energy. J. Chem. Phys. 104, 8821 (1996)

    Article  ADS  Google Scholar 

  44. Stern, H.A., Rittner, F., Berne, B.J., Friesner, R.A.: Combined fluctuating charge and polarizable dipole models: application to a five-site water potential function. J. Chem. Phys. 115, 2237 (2001)

    Article  ADS  Google Scholar 

  45. Rick, S.W., Stuart, S.J., Berne, B.J.: Dynamical fluctuating charge force-fields - application to liquid water. J. Chem. Phys. 101, 6141 (1994)

    Article  ADS  Google Scholar 

  46. Ren, P.Y., Ponder, J.W.: Polarizable atomic multipole water model for molecular mechanics simulation. J. Phys. Chem., B. 107, 5933 (2003)

    Article  Google Scholar 

  47. Curtiss, L.A., Frurip, D.J., and Blander, M.: Studies of molecular association in H2O and D2O vapors by measurement of thermal-conductivity. J. Chem. Phys. 71, 2703 (1979)

    Article  ADS  Google Scholar 

  48. Ponder, J.W., Case, D.A.: Force fields for protein simulations. Adv. Protein Chem. 66, 27 (2003)

    Article  Google Scholar 

  49. Headrick, J.M., Bopp, J.C., Johnson, M.A.: Predissociation spectroscopy of the argon-solvated H5O2+ “Zundel” cation in the 1000-1900 cm(-1) region. J. Chem. Phys. 121, 11523 (2004)

    Article  ADS  Google Scholar 

  50. Schmitt, U.W., Voth, G.A.: Multistate empirical valence bond model for proton transport in water. J. Phys. Chem., B. 102, 5547 (1998)

    Article  Google Scholar 

  51. Xantheas, S.S.: Ab-Initio studies of cyclic water clusters (H2O)(n), n = 1-6 .3. Comparison of density-functional with MP2 results. J. Chem. Phys. 102, 4505 (1995)

    Article  ADS  Google Scholar 

  52. Pedulla, J.M., Kim, K., Jordan, K.D.: Theoretical study of the n-body interaction energies of the ring, cage and prism forms of (H2O)(6). Chem. Phys. Lett. 291, 78 (1998)

    Article  ADS  Google Scholar 

  53. Xantheas, S.S., Apra, E.: The binding energies of the D-2d and S-4 water octamer isomers: High-level electronic structure and empirical potential results. J. Chem. Phys. 120, 823 (2004)

    Article  ADS  Google Scholar 

  54. Chaudhuri, C., Wang, Y.S., Jiang, J.C., Lee, Y.T., Chang, H.C., Niedner-Schatteburg, G.: Infrared spectra and isomeric structures of hydroxide ion-water clusters OH- (H2O)(1-5): a comparison with H3O+ (H2O)(1-5). Mol. Phys. 99, 1161 (2001)

    Article  ADS  Google Scholar 

  55. Sagnella, D.E., Laasonen, K., Klein, M.L.: Ab inito molecular dynamics study of proton transfer in a polyglycine analog of the ion channel Gramicidin A. Biophys. J. 71, 1172 (1996)

    Article  ADS  Google Scholar 

  56. Mei, H.S., Tuckerman, M.E., Sagnella, D.E., Klein, M.L.: Quantum nuclear ab initio molecular dynamics study of water wires. J. Phys. Chem., B. 102, 10446 (1998)

    Article  Google Scholar 

  57. Brewer, M.L., Schmitt, U.W., Voth, G.A.: The formation and dynamics of proton wires in channel environments. Biophys. J. 80, 1691 (2001)

    Article  Google Scholar 

  58. von Grotthuss, C.J.D.: Sur la decomposition de l’eau et des corps qu’elle tient en dissolution a l’aide de l’electricite galvanique. Ann. Chim. LVIII, 54 (1806)

    Google Scholar 

  59. Agmon, N.: The grotthuss mechanism. Chem. Phys. Lett. 244, 456 (1995)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Peter Jordan and Michael Francis Hagan for helpful discussions, Liliya Vugmeyster for guidance in Monte Carlo simulation, and Ercan Kamber for his advice regarding high performance computation. This work was supported by NIH grant R01EB001035.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith Herzfeld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kale, S., Herzfeld, J., Dai, S. et al. Lewis-inspired representation of dissociable water in clusters and Grotthuss chains. J Biol Phys 38, 49–59 (2012). https://doi.org/10.1007/s10867-011-9229-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-011-9229-5

Keywords

Navigation