Skip to main content
Log in

Inferring and quantifying the role of an intrinsic current in a mechanism for a half-center bursting oscillation

A dominant scale and hybrid dynamical systems analysis

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

An Erratum to this article was published on 10 November 2012

Abstract

This paper illustrates an informatic technique for inferring and quantifying the dynamic role of a single intrinsic current in a mechanism of neural bursting activity. We analyze the patterns of the most dominant currents in a model of half-center oscillation in the leech heartbeat central pattern generator. We find that the patterns of dominance change substantially over a cycle, allowing different local reductions to be applied to the model. The result is a hybrid dynamical systems model, which is a piecewise representation of the mechanism combining multiple vector fields and discrete state changes. The simulation of such a model tests explicit hypotheses about the mechanism and is a novel way to retain both mathematical clarity and scientific detail in answering mechanistic questions about a complex model. Several insights into the central mechanism of “escape-release” in the model are elucidated by this analysis and compared with previous studies. The broader application and extension of this technique is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Coombes, S., Bressloff, P.C. (eds.): Bursting: The Genesis of Rhythm in the Nervous System. World Scientific, London (2005).

    MATH  Google Scholar 

  2. Grillner, S.: Control of locomotion in bipeds, tetrapods and fish. In: V. Brooks (ed.) Handbook of physiology. Sec 1: the nervous system, vol. II: motor control, pp. 1179–1236. American Physiological Society (1981)

  3. Marder, E., Calabrese, R.L.: Principles of rhythmic motor pattern generation. Physiol. Rev. 76, 687–717 (1996)

    Google Scholar 

  4. Cymbalyuk, G., Gaudry, Q., Masino, M.A., Calabrese, R.L.: Bursting in leech heart interneurons: cell-autonomous and network-based mechanisms. J. Neurosci. 22, 10,580–10,592 (2002)

    Google Scholar 

  5. Hill, A.A.V., Lu, J., Masino, M.A., Olsen, Ø.H., Calabrese, R.L.: A model of a segmental oscillator in the leech heartbeat neuronal network. J. Comput. Neurosci. 10, 281–302 (2001)

    Article  Google Scholar 

  6. Ermentrout, G.B., Terman, D.H.: Mathematical Foundations of Neuroscience. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  7. Izhikevich, E.M., Edelman, G.M.: Large-scale model of mammalian thalamocortical systems. Proc. Natl. Acad. Sci. USA 105, 3593–3598 (2008)

    Article  ADS  Google Scholar 

  8. Markram, H.: The Blue Brain project. Nat. Rev. Neurosci. 7, 153–160 (2006)

    Article  Google Scholar 

  9. Clewley, R., Rotstein, H.G., Kopell, N.: A computational tool for the reduction of nonlinear ODE systems possessing multiple scales. Multiscale Modeling and Simulation 4(3), 732–759 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Van Der Schaft, A., Schumacher, J.M.: An Introduction to Hybrid Systems. Springer, London (2000)

    MATH  Google Scholar 

  11. Clewley, R., Soto-Treviño, C., Nadim, F.: Dominant ionic mechanisms explored in the transition between spiking and bursting using local low-dimensional reductions of a biophysically realistic model neuron. J. Comput. Neurosci. 26(1), 75–90 (2009)

    Article  MathSciNet  Google Scholar 

  12. Bongard, J., Lipson, H.: Automated reverse engineering of nonlinear dynamical systems. Proc. Nat. Acad. Sci. USA 104(24), 9943–9948 (2007)

    Article  ADS  MATH  Google Scholar 

  13. Nadim, F., Olsen, Ø.H., de Schutter, E., Calabrese, R.L.: Modeling the leech heartbeat elemental oscillator I. interactions of intrinsic and synaptic currents. J. Comput. Neurosci. 2, 215–235 (1995)

    Article  Google Scholar 

  14. Olypher, A., Cymbalyuk, G., Calabrese, R.L.: Hybrid systems analysis of the control of burst duration by low-voltage-activated calcium current in leech heart interneurons. J. Neurophysiol. 96, 2857–286 (2006)

    Article  Google Scholar 

  15. Olypher, A.V., Calabrese, R.L.: How does maintenance of network activity depend on endogenous dynamics of isolated neurons? Neural Comput. 21, 1665–1682 (2009)

    Article  MATH  Google Scholar 

  16. Sorensen, M., DeWeerth, S., Cymbalyuk, G., Calabrese, R.L.: Using a hybrid neural system to reveal regulation of neuronal network activity by an intrinsic current. J. Neurosci. 24, 5427–5438 (2004)

    Article  Google Scholar 

  17. Tobin, A.E., Calabrese, R.L.: Endogenous and half-center bursting in morphologically inspired models of leech heart interneurons. J. Neurophysiol. 96, 2089–2106 (2006)

    Article  Google Scholar 

  18. Shelley, M., McLaughlin, D., Shapley, R., Wielaard, J.: States of high conductance in a large-scale model of the visual cortex. J. Comput. Neurosci. 13, 93–109 (2002)

    Article  Google Scholar 

  19. Clewley, R.: Encoding the fine-structured mechanism of action potential dynamics with qualitative motifs. J. Comput. Neurosci. (e-pub ahead of print 18 August 2010) (2010)

  20. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Equations, 2nd edn. Springer, Berlin (1996)

    MATH  Google Scholar 

  21. Clewley, R.H., Sherwood, W.E., LaMar, M.D., Guckenheimer, J.M.: PyDSTool, a software environment for dynamical systems modeling (2007). Available at: http://pydstool.sourceforge.net

  22. Govaerts, W., Sautois, B.: Computation of the phase response curve: a direct numerical approach. Neural Comput. 18, 817–847 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sherwood, W.E., Guckenheimer, J.: Dissecting the phase response of a model bursting neuron. SIAM J. Appl. Dyn. Syst. 9(3), 659–703 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Daun, S., Rubin, J.E., Rybak, I.A.: Control of oscillation periods and phase durations in half-center central pattern generators: a comparative mechanistic analysis. J. Comput. Neurosci. 27, 3–36 (2009)

    Article  MathSciNet  Google Scholar 

  25. Rubin, J., Terman, D.: Geometric singular perturbation analysis of neuronal dynamics. In: B. Fiedler (ed.) Handbook of Dynamical Systems, vol. 2. Elsevier, Amsterdam (2002)

    Google Scholar 

  26. Channell, P., Cymbalyuk, G., Shilnikov, A.: Origin of bursting through homoclinic spike adding in a neuron model. Phys. Rev. Lett. 98(13), 134,101 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank R. Lin and the anonymous reviewers for their helpful input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Clewley.

Additional information

Supported by NSF CISE/CCF-0829742.

An erratum to this article can be found online at http://dx.doi.org/10.1007/s10867-012-9285-5.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clewley, R. Inferring and quantifying the role of an intrinsic current in a mechanism for a half-center bursting oscillation. J Biol Phys 37, 285–306 (2011). https://doi.org/10.1007/s10867-011-9220-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-011-9220-1

Keywords

Navigation