Skip to main content
Log in

Mechanical behaviour analyses of sap ascent in vascular plants

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

A pure mechanical anisotropic model of a tree trunk has been developed based on the 3D finite element method. It simulates the microscopic structure of vessels in the trunk of a European beech (Fagus sylvatica) in order to study and analyse its mechanical behaviour with different configurations of pressures in the conduits of xylem and phloem. The dependence of the strains at the inner bark was studied when sap pressure changed. The comparison with previously published experimental data leads to the conclusion that a great tensile stress—or ‘negative pressure’—must exist in the water column in order to achieve the measured strains if only the mechanical point of view is taken into account. Moreover, the model can help to design experiments where qualitatively knowing the strains and the purely mechanical behaviour of the tree is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The stems used in the experiments in this paper and the ones for comparison were not submitted to either torsion or strong wind loads.

References

  1. Hales, S.: Vegetable Statics. Innys and Woodward, London (1727)

  2. Askenasy, E.: Über das Saftsteigen. Verhandlungen des Naturhistorisch–Medizinischen Vereins zu Heidelberg 5, 325–345 (1895)

    Google Scholar 

  3. Dixon, H.H., Joly, J.: On the ascent of sap. Ann. Bot. 8, 468–470 (1894)

    Google Scholar 

  4. Dixon, H.H., Joly, J.: On the ascent of sap. Philos. Trans. R. Soc. Lond., B 186, 563–576 (1895)

    Article  ADS  Google Scholar 

  5. Scholander, P.F., Hammel, H.T., Bradstreet, E.D., Hemmingsen, E.A.: Sap pressure in vascular plants. Science 148, 339–346 (1965)

    Article  ADS  Google Scholar 

  6. Cochard, H., Forestier, S., Améglio, T.: A new validation of the Scholander pressure chamber technique based on stem diameter variations. J. Exp. Bot. 52, 1361–1365 (2001)

    Article  Google Scholar 

  7. Zimmermann, U., Meinzer, F.C., Benkert, R.: Xylem water transport: is the available evidence consistent with the cohesion theory. Plant Cell Environ. 17, 1169–1181 (1994)

    Article  Google Scholar 

  8. Zimmermann, U., Zhu, J.J., Meinzer, F., Goldstein, G., Schneider, H.: High molecular weight organic compounds in the xylem sap of mangroves: Implications for long-distance water transport. Bot. Acta 107, 218–229 (1994)

    Google Scholar 

  9. Balling, A., Zimmermann, U., Büchner, K.-H., Lange, O.L.: Direct measurement of negative pressure in artificial–biological systems. Naturwissenschaften 75, 409–411 (1988)

    Article  ADS  Google Scholar 

  10. Canny, M.J.: A new theory for the ascent of sap-cohesion supported by tissue pressure. Ann. Bot. 75, 343–357 (1995)

    Article  Google Scholar 

  11. Zimmermann, U., Schneider, H., Wegner, L.H., Haase, A.: Water ascent in tall tress: does evolution of land plants rely on a highly metastable state? New Phytol. 165, 575–615 (2004)

    Article  Google Scholar 

  12. Yoshida, M., Yamamoto, O., Okuyama, T.: Strain changes on the inner bark surface of an inclined coniferous sapling producing compression wood. Holzforschung 54, 664–668 (2000)

    Article  Google Scholar 

  13. Yoshida, M., Ikawa, M., Kaneda, K., Okuyama, T.: Stem tangential strain on the tension wood side of Fagus crenata saplings. J. Wood Sci. 49, 475–478 (2003)

    Google Scholar 

  14. Daudet, F.-A., Améglio, T., Cochard, H., Archilla, O., Lacointe, A.: Experimental analysis of the role of water and carbon in tree stem diameter variations. J. Exp. Bot. 56, 135–144 (2005)

    Google Scholar 

  15. Goldhammer, D.A., Fereres, E.: Irrigation scheduling protocols using continuously recorded trunk diameter measurements. Irrig. Sci. 20, 115–125 (2001)

    Article  Google Scholar 

  16. Okuyama, T., Yoshida, M., Yamamoto, H.: An estimation of turgor pressure change as one of the factors of growth stress generation in cell walls. Mokuzai Gakkaishi 41, 1070–1078 (1995)

    Google Scholar 

  17. Remorini, D., Massai, R.: Comparison of water status indicators for young peach trees. Irrig. Sci. 22, 39–46 (2003)

    Google Scholar 

  18. Irvine, J., Grace, J.: Continuous measurements of water tension in xylem of trees based on the elastic properties of wood. Planta 202, 455–461 (1997)

    Article  Google Scholar 

  19. So, H.B., Reicosky, D.C., Taylor, H.M.: Utility of stem diameter changes as predictors of plant canopy water potential. Agron. J. 71, 707–713 (1979)

    Article  Google Scholar 

  20. Alméras, T., Gril, J.: Mechanical analysis of the strains generated by water tension in plant stems. Part I: stress transmission from the water to the cell walls. Tree Physiol. 27, 1505–1516 (2007)

    Google Scholar 

  21. Alméras, T.: Mechanical analysis of the strains generated by water tension in plant stems. Part II: strains in wood and bark and apparent compliance. Tree Physiol. 28, 1513–1523 (2008)

    Google Scholar 

  22. Alméras, T., Yoshida, M., Okuyama, T.: Strains inside xylem and inner bark of a stem submitted to a change in hydrostatic pressure. Trees 20, 460–467 (2006)

    Article  Google Scholar 

  23. Schweingruber, F.H., Landolt, W.: The Xylem Database. Swiss Federal Research Institute WSL Updated (2005)

  24. Akin, J.E.: Finite Element Analysis with Error Estimators. Elsevier, Amsterdam (2005). ISBN: 978-0-7506-6722-7

    Google Scholar 

  25. Rao, S.S.: The Finite Element Method in Engineering. Elsevier, Amsterdam (2005). ISBN: 978-0-7506-7828-5

    Google Scholar 

  26. Tyree, M.T., Zimmerman, M.H.: Xylem structure and the ascent of sap. In: Timell, T. (ed.) Springer Series in Wood Science, 283 pp, 2nd edn. Springer, Berlin (2002)

    Google Scholar 

  27. Abe, H., Nakai, T.: Effect of the water status within a tree on tracheid morphogenesis in Cryptomeria japonica D. Don. Trees 14, 124–129 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efren Diez-Jimenez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perez-Diaz, JL., Garcia-Prada, JC., Romera-Juarez, F. et al. Mechanical behaviour analyses of sap ascent in vascular plants. J Biol Phys 36, 355–363 (2010). https://doi.org/10.1007/s10867-010-9189-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-010-9189-1

Keywords

Navigation