Skip to main content
Log in

Low pH Stabilizes the Inverted Hexagonal II Phase in Dipalmitoleoylphosphatidylethanolamine Membrane

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Dipalmitoleoylphosphatidylethanolamine (DPOPE) membrane is in the Lα phase in neutral pH at 20 °C. The results of small-angle X-ray scattering (SAXS) indicate that an Lα to HII phase transition in DPOPE membranes occurred at pH 1.9 in the absence of salt, and at pH 2.8 in the presence of 0.5 M KCl, at fully hydrated condition at 20 °C. The spontaneous curvature of DPOPE monolayer membrane did not change with a decrease in pH values. To elucidate the mechanism, we have investigated the effect of the cationic dioctadecyldimethylammonium (DODMA) on the structure and phase behavior of DPOPE membrane. The result shows that DODMA stabilizes the HII phase rather than the Lα phase in DPOPE membrane at its low concentrations. Based on these results, the HII phase stability of DPOPE membrane due to low pH is discussed in terms of the spontaneous curvature of the monolayer membrane and the packing energy of acyl chains in the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Colotto, A., Martin, I., Ruysschaert, J.M., Sen, A., Hui, S.W. and Epand, R.P.: Structural study of the interaction between the SIV fusion peptide and model membranes, Biochemistry 35 (1996), 980–989.

    Google Scholar 

  2. Colotto, A. and Epand, R.P.: Structural study of the relationship between the rate of membrane fusion and the ability of the fusion peptide of influenza virus to perturb bilayer, Biochemistry 36 (1997), 7644–7651.

    Google Scholar 

  3. Rietveld, A.G., Koorengevel, M.C. and de Kruijff, B.: Non-bilayer lipids are required for efficient protein transport across the plasma membrane of Escherichia coli, EMBO J. 14 (1995), 5506–5513.

    Google Scholar 

  4. Kuzmin, P.I., Zimmerberg, J., Chizmadzhev, Y.A. and Cohen, F.S.: A quantitative model for membrane fusion based on low energy intermediates, Proc. Natl. Acad. Sci. USA 98 (2001), 7235–7240.

    Article  CAS  PubMed  Google Scholar 

  5. Koynova, R. and Caffrey, M.: Phases and phase transitions of the hydrated phophatidylethanol-amines, Chem. Phys. Lipids 69 (1994), 1–34.

    Google Scholar 

  6. Toombes, G.E.S., Finnefrock, A.C., Tate, M.W. and Gruner, S.M.: Determination of Lα–HII phase transition temperature for 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine, Biophys. J. 82 (2002), 2504–2510.

    Google Scholar 

  7. Seddon, J.M., Cevc, G. and Marsh, D.: Calorimetric studies of the gel-fluid (Lβ–Lα) and lamellar-inverted hexagonal (Lα–HII) phase transitions in dialkyl- and diacylphosphatidylethanolamines, Biochemistry 22 (1983), 1280–1289.

    Google Scholar 

  8. Koynova, R.D., Tenchov, B.G. and Quinn, P.J.: Sugars favour formation of hexagonal (HII) phase at the expense of lamellar liquid-crystalline phase in hydrated phosphatidylethanolamines, Biochim. Biophys. Acta 980 (1989), 377–380.

    Google Scholar 

  9. Kirk, G.L. and Gruner, S.M.: Lyotropic effects of alkanes and headgroup composition on the Lα–HII lipid liquid crystal phase transition: Hydrocarbon packing versus intrinsic curvature, J. Physique (Paris) 46 (1985), 761–769.

    Google Scholar 

  10. Veiro, J.A., Khalifah, R.G. and Rowe, E.S.: The polymorphic phase behavior of dielaidoylphosphatidylethanolamine. Effect of n-alkanols, Biochim. Biophys. Acta. 979 (1989), 251–256.

    Google Scholar 

  11. Furuike, S., Levadny, V.G., Li, S.J., and Yamazaki, M.: Low pH induces an interdigitated gel to bilayer gel phase transition in dihexadecylphosphatidylcholine membrane, Biophys. J. 77 (1999), 2015–2023.

    Google Scholar 

  12. Träuble, H., Teubner, M., Woolley, P. and Eibl, H.: Electrostatic interactions at charged lipid membranes. 1. Effects of pH and univalent cations on membrane structure, Biophys. Chem. 4 (1976), 319–342.

    Google Scholar 

  13. Jähnig, F., Harlos, K., Vogel, H. and H. Eible.: Electrostatic interactions at charged lipid membranes. Electrostatically induced tilt, Biochemistry 18 (1979), 1459–1468.

    Google Scholar 

  14. Cevc, G., Watts, A. and Marsh, D.: Titration of the phase transition of phosphatidylserine bilayer membranes. Effects of pH, surface electrostatics, ion binding, and head group hydration, Biochemistry 20 (1981), 4955–4965.

    Google Scholar 

  15. Watts, A., Harlos, K. and Marsh. D.: Charged-induced tilt in ordered-phase phosphatidylglycerol bilayers. Evidence from X-ray diffraction, Biochim. Biophys. Acta 645 (1981), 91–96.

    Google Scholar 

  16. Li, X., Schick, M.: Theory of lipid polymorphism: application to phosphatidylethanolamine and phosphatidylserine, Biophys. J. 78 (2000), 34–46.

    Google Scholar 

  17. Nayar, R., Schmid, S.L., Hope, M.J. and Cullis, P.R.: Structural preferences of phosphatidylinositol and phosphatidylinositol-phosphatidylethanolamine model membranes. Influence of Ca2 + and Mg2 +, Biochim. Biophys. Acta 688 (1982), 169–176.

    Google Scholar 

  18. Kinoshita, K., Li, S.J. and Yamazaki, M.: The mechanism of the stabilization of the hexagonal II (HII) phase in phosphatidylethanolamine membranes in the presence of low concentrations of dimethyl sulfoxide, Eur. Biophys. J. 30 (2001), 207–220.

    Google Scholar 

  19. Li, S.J., Yamashita, Y. and Yamazaki, M.: Effect of electrostatic interactions on phase stability of cubic phases of membranes of monoolein/dioleoylphosphatidic acid mixtures, Biophys. J. 81 (2001), 983–993.

    Google Scholar 

  20. Glatter, O. and Kratky, O.: Small Angle X-ray Scattering, Academic Press, San Diego, CA 1982.

    Google Scholar 

  21. Helfrich, W.: Elastic properties of lipid bilayers: Theory and possible experiments, Z. Naturforsch 28c (1973), 693–703.

    Google Scholar 

  22. Gruner, S.M.: Intrinsic curvature hypothesis for biomembrane lipid composition: a role for nonbilayer lipids, Proc. Natl. Acad. Sci. USA 82 (1985), 3665–3669.

    Google Scholar 

  23. Rand, R.P., Fuller, N.L., Gruner, S.M. and Parsegian, V.A.: Membrane curvature, lipid segregation, and structural transition for phospholipids under dual-solvent stress, Biochemistry 29 (1990), 76–87.

    CAS  PubMed  Google Scholar 

  24. Chen, Z. and Rand, R.P.: Comparative study of the effects of several n-alkanes on phospholipid hexagonal phases, Biophys. J. 74 (1998), 944–952.

    Google Scholar 

  25. Gruner, S.M.: Stability of lyotropic phases with curved interfaces, J. Phys. Chem. 93 (1989), 7562–7570.

    Google Scholar 

  26. Turner, D.C., Wanf, Z.-G., Gruner, S.M., Mannock, D.A. and McElhaney, R.M.: Structural study of the inverted cubic phases of di-dodecyl alkyl β -D-glucopyranosyl-rac-glycerol, J. Phys. II France 2 (1992), 2039–2063.

    Google Scholar 

  27. Templer, R.H., Seddon, J.M. and Warrender, N.A.: Measuring the elastic parameters for inverse bicontinuous cubic phases, Biophys. Chem. 49 (1994), 1–12.

    Google Scholar 

  28. Andersson, S., Hyde, S.T., Larsson, K. and Lidin, S.: Minimal surfaces and structures: From inorganic and metal crystals to cell membranes and biopolymers, Chem. Rev. 88 (1988), 221–242.

    Google Scholar 

  29. Kirk, G.L., Gruner, S.M. and Stein, D.L.: A thermodynamic model of the lamellar to inverse hexagonal phase transition of lipid membrane–water systems, Biochemistry 23 (1984), 1093–1102.

    Google Scholar 

  30. Marsh, D.: Intrinsic curvature in normal and inverted lipid structures and in membranes, Biophys. J. 70 (1996), 2248–2255.

    Google Scholar 

  31. Seelig, J., Macdonald, P.M. and Scherer, P.G.: Phospholipid head groups as sensors of electric charge in membranes, Biochemistry 26 (1987), 7535–7541.

    Google Scholar 

  32. Brown, M.F. and Seelig, J.: Influence of cholesterol on the polar region of phosphatidylcholine and phosphatidylethanolamine bilayers, Biochemistry 17 (1978), 381–384.

    Google Scholar 

  33. Akutsu, H. and Seelig, J.: Interaction of metal ions with phosphatidylcholine bilayer membranes, Biochemistry 20 (1981), 7366–7373.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Jie LI.

Rights and permissions

Reprints and permissions

About this article

Cite this article

LI, S., Yamazaki, M. Low pH Stabilizes the Inverted Hexagonal II Phase in Dipalmitoleoylphosphatidylethanolamine Membrane. J Biol Phys 30, 377–386 (2004). https://doi.org/10.1007/s10867-004-7894-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-004-7894-3

Key words

Navigation