Skip to main content
Log in

Short ischemia induces rat kidney mitochondria dysfunction

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Renal artery clamping itself induces renal ischemia which subsequently causes renal cell injury and can lead to renal failure. The duration of warm ischemia that would be safe for postoperative kidney function during partial nephrectomy remains under investigations. Mitochondria play an important role in pathophysiology of ischemia-reperfusion induced kidney injury, however relation between ischemia time and mitochondrial dysfunction are not fully elucidated. Thus, the effects of renal ischemia (20 min, 40 min and 60 min) on mitochondrial functions were investigated by using in vitro rat ischemia model. Thus, electronmicroscopy showed that at short (20 min) ischemia mitochondria start to swell and the damage increases with the duration of ischemia. In accordance with this, a significant decrease in mitochondrial oxidative phosphorylation capacity was observed already after 20 min of ischemia with both, complex I dependent substrate glutamate/malate (52 %) and complex II dependent substrate succinate (44 %) which further decreased with the prolonged time of ischemia. The diminished state 3 respiration rate was associated with the decrease in mitochondrial Complex I activity and the release of cytochrome c. Mitochondrial Ca2+ uptake was diminished by 37–49 % after 20–60 min of ischemia and caspase-3 activation increased by 1.15–2.32-fold as compared to control. LDH activity changed closely with increasing time of renal ischemia. In conclusion, even short time (20 min) of warm ischemia in vitro leads to renal mitochondrial injury which increases progressively with the duration of ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abe K, Hayashi N, Terada H (1999) Effect of endogenous nitric oxide on energy metabolism of rat heart mitochondria during ischemia and reperfusion. Free Radic Biol Med 26:779–787

    Article  Google Scholar 

  • Becker F, Van PH, Hakenberg OW, Stief C, Gill I, Guazzoni G, Montorsi F, Russo P, Stockle M (2009) Assessing the impact of ischaemia time during partial nephrectomy. Eur Urol 56:625–634

    Article  Google Scholar 

  • Boothpur R, Brennan DC (2008) Didactic lessons from the serum lactate dehydrogenase posttransplant: a clinical vignette. Am J Transplant 8:862–865

    Article  CAS  Google Scholar 

  • Brezis M, Epstein FH (1993) Cellular mechanisms of acute ischemic injury in the kidney. Annu Rev Med 44:27–37

    Article  CAS  Google Scholar 

  • Burke TJ, Wilson DR, Levi M, Gordon JA, Arnold PE, Schrier RW (1983) Role of mitochondria in ischemic acute renal failure. Clin Exp Dial Apheresis 7:49–61

    CAS  Google Scholar 

  • Dave KD, Saul I, Busto R, Ginsberg MD, Sick TJ, Pérez-Pinzón MA (2001) Ischemic preconditioning preserves mitochondrial function after global cerebral ischemia in rat hippocampus. J Cerebr Blood Flow & Metabolism. 21:1401–1410

    Article  CAS  Google Scholar 

  • Desai MM, Gill IS, Ramani AP, Spaliviero M, Rybicki L, Kaouk JH (2005) The impact of warm ischaemia on renal function after laparoscopic partial nephrectomy. BJU Int 95:377–383

    Article  Google Scholar 

  • Dong Z, Saikumar P, Weinberg JM, Venkatachalam MA (2006) Calcium in cell injury and death. Annu Rev Pathol 1:405–434

    Article  CAS  Google Scholar 

  • Gill IS, Kamoi K, Aron M, Desai MM (2010) 800 laparoscopic partial nephrectomies: a single surgeon series. J Urol 183(1):34–41

    Article  Google Scholar 

  • Gonzalez-Flecha B, Boveris A (1995) Mitochondrial sites of hydrogen peroxide production in reperfused rat kidney cortex. BBA 1243:361–366

    Google Scholar 

  • Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177:751–766

    CAS  Google Scholar 

  • Halestrap AP (2009) What is the mitochondrial permeability transition pore? J Mol Cell Cardiol 46:821–831

    Article  CAS  Google Scholar 

  • Halestrap AP, Pasdois P (2009) The role of the mitochondrial permeability transition pore in heart disease. Biochim Biophys Acta 1787:1402–1415

    Article  CAS  Google Scholar 

  • Hartung KJ, Jung K, Minda R, Kunz W (1985) Mitochondrial respiratory function as indicator of the ischemic injury of the rat kidney. Biomed Biochim Acta 44:1435–1443

    CAS  Google Scholar 

  • Jassem W, Heaton ND (2004) The role of mitochondria in ischemia/reperfusion injury in organ transplantation. Kidney Int 66:514–517

    Article  CAS  Google Scholar 

  • Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6:513–519

    Article  CAS  Google Scholar 

  • Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    Article  CAS  Google Scholar 

  • Linkermann A, Brasen JH, Darding M, Jin MK, Sanz AB, Heller JO, De ZF, Weinlich R, Ortiz A, Walczak H, Weinberg JM, Green DR, Kunzendorf U, Krautwald S (2013) Two independent pathways of regulated necrosis mediate ischemia-reperfusion injury. Proc Natl Acad Sci U S A 110:12024–12029

    Article  CAS  Google Scholar 

  • Liu X, Kim CN, YangJ JR, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157

    Article  CAS  Google Scholar 

  • Lukyanova LD (2013) Mitochondrial signaling in hypoxia. Open Journal of Endocrine and Metabolic Diseases 3:20–32

    Article  Google Scholar 

  • Marshall KD, Edwards MA, Krenz M, Davis JW, Baines CP (2014) Proteomic mapping of proteins released during necrosis and apoptosis from cultured neonatal cardiac myocytes. Am J Physiol Cell Physiol 306:C639–C647

    Article  CAS  Google Scholar 

  • Parekh DJ, Weinberg JM, Ercole B, Torkko KC, Hilton W, Bennett M, Devarajan P, Venkatachalam MA (2013) Tolerance of the human kidney to isolated controlled ischemia. J Am Soc Nephrol 24:506–517

    Article  CAS  Google Scholar 

  • Piper HM, Sezer O, Schleyer M, Schwartz P, Hütter JF, Spieckermann PG (1985) Development of ischemia-induced damage in defined mitochondrial subpopulations. J Mol Cell Cardio. 17:885–896

    Article  CAS  Google Scholar 

  • Ridgway RL (1986) Flat, adherent well-contrasted semithin plastic sections for light microscopy. Stain Technol 61:253–255

    CAS  Google Scholar 

  • Rouslin W (1983) Mitochondrial complexes I. II, III, IV, and V in Myocardial ischemia and Autolysis Am J Physiol Heart and Circ Physiol 244:H743–H748

    CAS  Google Scholar 

  • Thompson RH, Frank I, Lohse CM, Saad IR, Fergany A, Zincke H, Leibovich BC, Blute ML, Novick AC (2007) The impact of ischemia time during open nephron sparing surgery on solitary kidneys: a multi-institutional study. J Urol 177:471–476

    Article  Google Scholar 

  • Thompson RH, Lane BR, Lohse CM, Leibovich BC, Fergany A, Frank I, Gill IS, Blute ML, Campbell SC (2010) Every minute counts when the renal hilum is clamped during partial nephrectomy. Eur Urol 58:340–345

    Article  Google Scholar 

  • Tirapelli LF, Bagnato VS, Tirapelli DP, Kurachi C, Barione DF, Tucci S, Suaid HJ, Cologna AJ, Martins AC (2008) Renal ischemia in rats: mitochondria function and laser autofluorescence. Transplant Proc 40:1679–1684

    Article  CAS  Google Scholar 

  • Volpe A, Blute ML, Ficarra V, Gill IS, Kutikov A, Porpiglia F, Rogers C, Touijer KA, Van PH, Thompson RH (2015) Renal ischemia and function after partial nephrectomy: a collaborative review of the literature. Eur Urol. doi:10.1016/j.eururo.2015.01.025

    Google Scholar 

  • Webster KA (2012) Mitochondrial membrane permeabilization and cell death during myocardial infarction: roles of calcium and reactive oxygen species. Futur Cardiol 8:863–884

    Article  CAS  Google Scholar 

  • Yang B, Jain S, Pawluczyk IZ, Imtiaz S, Bowley L, Ashra SY, Nicholson ML (2005) Inflammation and caspase activation in long-term renal ischemia/reperfusion injury and immunosuppression in rats. Kidney Int 68:2050–2067

    Article  CAS  Google Scholar 

  • Zager RA, Johnson AC, Becker K (2013) Renal cortical lactate dehydrogenase: a useful, accurate, quantitative marker of tubular injury and acute renal failure. PLoS One 8:e66776

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasa Baniene.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

All authors read and approved final manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baniene, R., Trumbeckas, D., Kincius, M. et al. Short ischemia induces rat kidney mitochondria dysfunction. J Bioenerg Biomembr 48, 77–85 (2016). https://doi.org/10.1007/s10863-016-9643-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-016-9643-2

Keywords

Navigation