Skip to main content
Log in

Photosystem II based multilayers obtained by electrostatic layer-by-layer assembly on quartz substrates

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Photosystem II (PSII) proteins from spinach leaves were immobilized onto quartz substrates according to the Layer-by-Layer (LbL) procedure, alternating protein to polyethylenimine (PEI) layers by exploiting electrostatic interactions. The effects of several factors, such as storage conditions, ageing of the PSII-modified substrates, as well as PSII concentration in buffer, on the quality of the prepared multilayers, were investigated by UV–vis Absorption Spectroscopy and Atomic Force Microscopy (AFM). A number of 13 layers was found to be optimal to guarantee intense PSII optical signals with homogeneous morphological distributions of proteins. The multilayers resulted stable if stored in contact with air at 4 °C, as observed by UV–vis Absorption spectra recorded after 48 h. The best results in terms of AFM images and electron transfer efficiency (measured by Hill Reaction assays) were gained by using 5.6 × 10−7 M chlorophyll concentration, obtaining multilayers with the most ordered protein distributions and the highest electron transfer efficiency, i.e. 85 % of an iso-absorbing PSII suspension. The results highlight the possibility to successfully immobilize PSII proteins, without considerable loss of bioactivity, thanks to the mild nature of the electrostatic LbL technique, opening up possibilities of applications in the bioelectrochemical energy conversion and biosensoristic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antipov AA, Sukhorukov GB, Möhwald H (2003) Influence of the ionic strength on the polyelectrolyte multilayers permeability. Langmuir 19:2444–2448

    Article  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in beta vulgaris. Plant Physiol 24:1–15

    Article  CAS  Google Scholar 

  • Barber J (2006) Photosystem II: an enzyme of global significance. Biochem Soc Trans 34:619–631

    Article  CAS  Google Scholar 

  • Berthold DA, Babcock GT, Yocum CF (1981) A highly resolved, oxygen-evolving photosystem II preparation from spinach thylakoid membranes. EPR and electron-transport properties. FEBS Lett 134:231–234

    Article  CAS  Google Scholar 

  • Campàs M, Carpentier R, Rouillon R (2008) Plant tissue- and photosynthesis-based biosensors. Biotechnol Adv 26:370–378

    Article  Google Scholar 

  • Cheng W, Dong S, Wang E (2002) Colloid chemical approach to nanoelectrode ensembles with highly controllable active area fraction. Anal Chem 74:3599–3604

    Article  CAS  Google Scholar 

  • Crespilho FN, Zucolotto V, Oliveira ON Jr, Nart FC (2006) Electrochemistry of layer-by-layer films. Int J Electrochem Sci 1:194–214

    CAS  Google Scholar 

  • Das R, Kiley PJ, Segal M, Norville J, Yu AA, Wang L, Trammell SA, Reddick LE, Kumar R, Stellacci F, Lebedev N, Schnur J, Bruce BD, Zhang S, Baldo M (2004) Integration of photosynthetic protein molecular complexes in solid-state electronic devices. Nano Lett 4:1079–1083

    Article  CAS  Google Scholar 

  • Daum B, Nicastro D, Austin J II, McIntosh JR, Kuhlbrandta W (2010) Arrangement of photosystem II and ATP synthase in chloroplast membranes of spinach and pea. Plant Cell 22:1299–1312

    Article  CAS  Google Scholar 

  • Decher G, Hong JD, Schmitt J (1992) Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210–211:831–835

    Article  Google Scholar 

  • Del Carlo M, Compagnone D (2010) Recent strategies for the biological sensing of pesticides: from the design to the application in real samples. Bioanal Rev 1:159–176

    Article  Google Scholar 

  • Dubas ST, Schlenoff JB (2001) Swelling and smoothing of polyelectrolyte multilayers by salt. Langmuir 17:7725–7727

    Article  CAS  Google Scholar 

  • Esper B, Badura A, Rögner M (2006) Photosynthesis as a power supply for (bio-)hydrogen production. Trends Plant Sci 11:543–549

    Article  CAS  Google Scholar 

  • Frense D, Müller A, Beckmann D (1998) Detection of environmental pollutants using optical biosensor with immobilized algae cells. Sensors Actuators B 51:256–260

    Article  CAS  Google Scholar 

  • Giardi MT, Pace E (2006) Photosystem II-based biosensors for the detection of photosynthetic herbicides. In: Giardi MT, Piletska EV (eds) Biotechnological applications of photosynthetic proteins: biochips, biosensors and biodevices. Springer, New York, pp 147–154

    Chapter  Google Scholar 

  • Hankamer B, Nield J, Zheleva D, Boekema E, Jansson S, Barber J (1997) Isolation and biochemical characterisation of monomeric and dimeric photosystem II complexes from spinach and their relevance to the organisation of photosystem II in vivo. Eur J Biochem 243:422–429

    Article  CAS  Google Scholar 

  • Hill R (1937) Oxygen evolved by isolated chloroplasts. Nature 139:881–882

    Article  CAS  Google Scholar 

  • Ibarz G, Dähne L, Donath E, Möhwald H (2001) Smart micro- and nanocontainers for storage, transport, and release. Adv Mater 13:1324–1327

    Article  CAS  Google Scholar 

  • Kato M, Cardona T, Rutherford AW, Reisner E (2012) Photoelectrochemical water oxidation with photosystem II integrated in a mesoporous indium tin oxide electrode. J Am Chem Soc 134:8332–8335

    Article  CAS  Google Scholar 

  • Koblìzek M, Malý J, Masojídek J, Komenda J, Kučera T, Giardi MT, Mattoo AK, Pilloton R (2002) A biosensor for the detection of triazine and phenylurea herbicides designed using Photosystem II coupled to a screen-printed electrode. Biotechnol Bioeng 78:110–116

    Article  Google Scholar 

  • Kong J, Sun W, Wu X, Deng J, Lu Z, Lvov Y, Desamero RZB, Frank HA, Rusling JF (1999) Fast reversible electron transfer for photosynthetic reaction center from wild type Rhodobacter sphaeroides re-constituted in polycation sandwiched monolayer film. Bioelectrochem Bioenerg 48:101–107

    Article  CAS  Google Scholar 

  • Lavalle P, Picart C, Mutterer JR, Gergely C, Reiss H, Voegel J-C, Senger B, Schaaf PJ (2004) Modeling the buildup of polyelectrolyte multilayer films having exponential growth. J Phys Chem B 108:635–648

    Article  CAS  Google Scholar 

  • Liu G, Zhao J, Sun Q, Zhang GJ (2008) Role of chain interpenetration in layer-by-layer deposition of polyelectrolytes. J Phys Chem B 112:3333–3338

    Article  CAS  Google Scholar 

  • Naessens M, Leclerc JC, Tranh-Minh C (2000) Fiber optic biosensor using Chlorella vulgaris for determination of toxic compounds. Ecotoxicol Environ Saf 46:181–185

    Article  CAS  Google Scholar 

  • Nield J, Barber J (2006) Refinement of the structural model for the photosystem II supercomplex of higher plants. Biochim Biophys Acta 1757:353–361

    Article  CAS  Google Scholar 

  • Nolte AJ, Treat ND, Cohen RE, Rubner MF (2008) Effect of relative humidity on the Young’s modulus of polyelectrolyte multilayer films and related nonionic polymers. Macromolecules 41:5793–5798

    Article  CAS  Google Scholar 

  • Oliveira ON Jr, He J-A, Zucolotto V, Balasubramanian S, Li L, Nalwa HS, Kumar J, Tripathy SK (2002) Layer-by-layer polyelectrolyte films for electronic and photonic applications. In: Kumar J, Nalwa HS (eds) Handbook of polyelectrolytes and their applications. American Scientific Publishers, Los Angeles, pp 1–37

    Google Scholar 

  • Raposo M, Pontes RS, Mattoso LHC, Oliveira ON Jr (1997) Kinetics of adsorption of poly(o-methoxyaniline) self-assembled films. Macromolecules 30:6095–6101

    Article  CAS  Google Scholar 

  • Rouillon R, Piletsky S, Piletska EV, Euzet P, Carpentier R (2006) Photosystem II biosensors for heavy metals monitoring. In: Giardi MT, Piletska EV (eds) Biotechnological applications of photosynthetic proteins: biochips, biosensors and biodevices. Springer, New York, pp 73–83

    Chapter  Google Scholar 

  • Schlenoff JB, Dubas ST (2001) Mechanism of polyelectrolyte multilayer growth: charge overcompensation and distribution. Macromolecules 34:592–598

    Article  CAS  Google Scholar 

  • Scognamiglio V, Raffi D, Lambreva M, Rea G, Tibuzzi A, Pezzotti G, Johanningmeier U, Giardi MT (2009) Chlamydomonas reinhardtii genetic variants as probes for fluorescence sensing system in detection of pollutants. Anal Bioanal Chem 394:1081–1087

    Article  CAS  Google Scholar 

  • Shan W, Liu H, Shi J, Yang L, Hu N (2008) Self-assembly of electroactive layer-by-layer films of heme proteins with anionic surfactant dihexadecyl phosphate. Biophys Chem 134:101–109

    Article  CAS  Google Scholar 

  • Steitz R, Leiner V, Tauer K, Khrenov V, von Klitzing R (2002) Temperature induced changes in polyelectrolyte films at the solid–liquid interface. Appl Phys A Mater Sci Process 74:S519–S521

    Article  CAS  Google Scholar 

  • Szabò I, Seraglia R, Rigoni F, Traldi P, Giacometti GM (2001) Determination of photosystem II subunits by matrix-assisted laser desorption/ionization mass spectrometry. J Biol Chem 276:13784–13790

    Article  Google Scholar 

  • Ventrella A, Catucci L, Villari V, Monsù Scolaro L, Agostiano A (2007) Focus on the aggregation processes of photosystem II complexes. Bioelectrochemistry 70:33–38

    Article  CAS  Google Scholar 

  • Ventrella A, Catucci L, Agostiano A (2010) Herbicides affect fluorescence and electron transfer activity of spinach chloroplasts, thylakoid membranes and isolated Photosystem II. Bioelectrochemistry 79:43–49

    Article  CAS  Google Scholar 

  • Ventrella A, Catucci L, Placido T, Longobardi F, Agostiano A (2011) Biomaterials based on photosynthetic membranes as potential sensors for herbicides. Biosens Bioelectron 26:4747–4752

    Article  CAS  Google Scholar 

  • Vittadello M, Gorbunov MY, Mastrogiovanni DT, Wielunski LS, Garfunkel EL, Guerrero F, Kirilovsky D, Sugiura M, Rutherford AW, Safari A, Falkowski PG (2010) Photoelectron generation by photosystem II core complexes tethered to gold surfaces. ChemSusChem 3:471–475

    Article  CAS  Google Scholar 

  • Wong JE, Rehfeldt F, Hänni P, Tanaka M, von Klitzing R (2004) Swelling behaviour of polyelectrolyte multilayers in saturated water vapor. Macromolecules 37:7285–7289

    Article  CAS  Google Scholar 

  • Yuan W, Li CM (2009) Direct modulation of localized surface plasmon coupling of Au nanoparticles on solid substrates via weak polyelectrolyte-mediated layer-by-layer self assembly. Langmuir 25:7578–7585

    Article  CAS  Google Scholar 

  • Zhao J, Liu B, Zou Y, Xu C, Kong J (2002) Photoelectric conversion of photosynthetic reaction center in multilayered films fabricated by layer-by-layer assembly. Electrochim Acta 47:2013–2017

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Catucci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ventrella, A., Catucci, L., Placido, T. et al. Photosystem II based multilayers obtained by electrostatic layer-by-layer assembly on quartz substrates. J Bioenerg Biomembr 46, 221–228 (2014). https://doi.org/10.1007/s10863-014-9544-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-014-9544-1

Keywords

Navigation