Skip to main content
Log in

The antiestrogen 4-hydroxytamoxifen protects against isotretinoin-induced permeability transition and bioenergetic dysfunction of liver mitochondria: comparison with tamoxifen

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The combination of isotretinoin (13-cis-retinoic acid) with antiestrogens seems to be a promising strategy for cancer chemotherapy. The aim of the study was to evaluate the effects of isotretinoin alone or in combination with 4-hydroxytamoxifen (OHTAM) and with its prodrug tamoxifen (TAM), on the functions of rat liver mitochondria, i.e., mitochondrial permeability transition (MPT), bioenergetic functions and adenine nucleotide translocase (ANT). Isotretinoin (5 nmol/mg protein) induced the Ca2+-dependent MPT pore opening in mitochondria energized with succinate, which was prevented by OHTAM, cyclosporine A, TAM and ANT ligands. When mitochondria were energized with glutamate/malate and in the absence of added Ca2+ isotretinoin decreased the state 3 respiration, the ATP levels, the active ANT content and increased the lag phase of the phosphorylation cycle, demonstrating that isotretinoin decreased the mitochondrial phosphorylation efficiency. These changes of isotretinoin in bioenergetic parameters were not significant in the presence of succinate. The effects of isotretinoin at 5 nmol/mg protein on the Ca2+-dependent MPT and phosphorylative efficacy may be related with interactions with the ANT. Above 10 nmol/mg protein isotretinoin strongly diminished the active ANT content, decreased the Δψ, inhibited the complex I and induced proton leak through the Fo fraction of complex V. The combination of OHTAM with isotretinoin only induced significant changes in the energy production systems at concentrations ≥5 nmol isotretinoin/mg protein. Therefore, our results suggest that isotretinoin-associated liver toxicity is possibly related with mitochondrial dysfunctions and that the combination with OHTAM may contribute to decrease its toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arce F, Gatjens-Boniche O, Vargas E, Valverde B, Diaz C (2005) Apoptotic events induced by naturally occurring retinoids ATRA and 13-cis retinoic acid on human hepatoma cell lines Hep3B and HepG2. Cancer Lett 229:271–281

    Article  CAS  Google Scholar 

  • Broekemeier KM, Dempsey ME, Pfeiffer DR (1989) Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria. J Biol Chem 264:7826–7830

    CAS  Google Scholar 

  • Cardoso CM, Custodio JB, Almeida LM, Moreno AJ (2001) Mechanisms of the deleterious effects of tamoxifen on mitochondrial respiration rate and phosphorylation efficiency. Toxicol Appl Pharmacol 176:145–152

    Article  CAS  Google Scholar 

  • Cardoso CM, Moreno AJ, Almeida LM, Custodio JB (2002a) 4-Hydroxytamoxifen induces slight uncoupling of mitochondrial oxidative phosphorylation system in relation to the deleterious effects of tamoxifen. Toxicology 179:221–232

    Article  CAS  Google Scholar 

  • Cardoso CM, Almeida LM, Custodio JB (2002b) 4-Hydroxytamoxifen is a potent inhibitor of the mitochondrial permeability transition. Mitochondrion 1:485–495

    Article  CAS  Google Scholar 

  • Cardoso CM, Moreno AJ, Almeida LM, Custodio JB (2003) Comparison of the changes in adenine nucleotides of rat liver mitochondria induced by tamoxifen and 4-hydroxytamoxifen. Toxicol In Vitro 17:663–670

    Article  CAS  Google Scholar 

  • Cardoso CM, Almeida LM, Custodio JB (2004) Protection of tamoxifen against oxidation of mitochondrial thiols and NAD(P)H underlying the permeability transition induced by prooxidants. Chem-Biol Interact 148:149–161

    Article  CAS  Google Scholar 

  • Chambon P (1996) A decade of molecular biology of retinoic acid receptors. FASEB J 10:940–954

    CAS  Google Scholar 

  • Chance B, Williams GR (1956) Respiratory enzymes in oxidative phosphorylation. VI. The effects of adenosine diphosphate on azide-treated mitochondria. J Biol Chem 221:477–489

    CAS  Google Scholar 

  • Cruz Silva MM, Madeira VM, Almeida LM, Custodio JB (2001) Hydroxytamoxifen interaction with human erythrocyte membrane and induction of permeabilization and subsequent hemolysis. Toxicol In Vitro 15:615–622

    Article  CAS  Google Scholar 

  • Custodio JB, Almeida LM, Madeira VM (1991) A reliable and rapid procedure to estimate drug partitioning in biomembranes. Biochem Biophys Res Commun 176:1079–1085

    Article  CAS  Google Scholar 

  • Custodio JB, Almeida LM, Madeira VM (1993) The anticancer drug tamoxifen induces changes in the physical properties of model and native membranes. Biochim Biophys Acta 1150:123–129

    Article  CAS  Google Scholar 

  • Custodio JB, Dinis TC, Almeida LM, Madeira VM (1994) Tamoxifen and hydroxytamoxifen as intramembraneous inhibitors of lipid peroxidation. Evidence for peroxyl radical scavenging activity. Biochem Pharmacol 47:1989–1998

    Article  CAS  Google Scholar 

  • Custodio JB, Moreno AJ, Wallace KB (1998) Tamoxifen inhibits induction of the mitochondrial permeability transition by Ca2+ and inorganic phosphate. Toxicol Appl Pharmacol 152:10–17

    Article  CAS  Google Scholar 

  • Custodio JB, Cardoso CM, Almeida LM (2002) Thiol protecting agents and antioxidants inhibit the mitochondrial permeability transition promoted by etoposide: Implications in the prevention of etoposide-induced apoptosis. Chem-Biol Interact 140:169–184

    Article  CAS  Google Scholar 

  • Czeczuga-Semeniuk E, Wolczynski S, Dzieciol J, Dabrowska M, Anchim T, Tomaszewska I (2001) 13-cis retinoic acid and all-trans retinoic acid in the regulation of the proliferation and survival of human breast cancer cell line MCF-7. Cell Mol Biol Lett 6:925–939

    CAS  Google Scholar 

  • Damodaran SE, Pradhan SC, Umamaheswaran G, Kadambari D, Reddy KS, Adithan C (2012) Genetic polymorphisms of CYP2D6 increase the risk for recurrence of breast cancer in patients receiving tamoxifen as an adjuvant therapy. Cancer Chemother Pharmacol 70:75–81

    Article  CAS  Google Scholar 

  • Demirpence E, Balaguer P, Trousse F, Nicolas JC, Pons M, Gagne D (1994) Antiestrogenic effects of all-trans-retinoic acid and 1,25-dihydroxyvitamin D3 in breast cancer cells occur at the estrogen response element level but through different molecular mechanisms. Cancer Res 54:1458–1464

    CAS  Google Scholar 

  • Erturan I, Naziroglu M, Akkaya VB (2012) Isotretinoin treatment induces oxiative stress toxicity in blood of patients with acne vulgaris: A clinical study. Cell Biochem Funct 30:552–557

    Article  CAS  Google Scholar 

  • Fulda S, Galluzzi L, Kroemer G (2010) Targeting mitochondria for cancer therapy. Nat Rev Drug Discov 9:447–464

    Article  CAS  Google Scholar 

  • Gazotti P, Malmstron K, Crompton M (1979) Membrane biochemistry: a laboratory manual on transport and bioenergetics. Springer, New York

    Google Scholar 

  • Goodfield MJ, Cox NH, Bowser A, McMillan JC, Millard LG, Simpson NB, Ormerod AD (2010) Advice on the safe introduction and continued use of isotretinoin in acne in the U.K. 2010. Br J Dermatol 162:1172–1179

    Article  CAS  Google Scholar 

  • Gornall AG, Bardawill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J Biol Chem 177:751–766

    CAS  Google Scholar 

  • Guruvayoorappan C, Pradeep CR, Kuttan G (2008) 13-cis-retinoic acid induces apoptosis by modulating caspase-3, bcl-2, and p53 gene expression and regulates the activation of transcription factors in B16F-10 melanoma cells. J Environ Pathol Toxicol Oncol 27:197–207

    Article  CAS  Google Scholar 

  • Halestrap AP, Pasdois P (2009) The role of the mitochondrial permeability transition pore in heart disease. Biochim Biophys Acta 1787:1402–1415

    Article  CAS  Google Scholar 

  • Halestrap AP, Woodfield KY, Connern CP (1997) Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase. J Biol Chem 272:3346–3354

    Article  CAS  Google Scholar 

  • Hua S, Kittler R, White KP (2009) Genomic antagonism between retinoic acid and estrogen signaling in breast cancer. Cell 137:1259–1271

    Article  Google Scholar 

  • Kamo N, Muratsugu M, Hongoh R, Kobatake Y (1979) Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol 49:105–121

    Article  CAS  Google Scholar 

  • Kass GE (2006) Mitochondrial involvement in drug-induced hepatic injury. Chem-Biol Interact 163:145–159

    Article  CAS  Google Scholar 

  • Kazanci N, Severcan F (2007) Concentration dependent different action of tamoxifen on membrane fluidity. Biosci Rep 27:247–255

    Article  CAS  Google Scholar 

  • Kiyotani K, Mushiroda T, Nakamura Y, Zembutsu H (2012) Pharmacogenomics of tamoxifen: roles of drug metabolizing enzymes and transporters. Drug Metab Pharmacokinet 27:122–131

    Article  CAS  Google Scholar 

  • Labbe G, Pessayre D, Fromenty B (2008) Drug-induced liver injury through mitochondrial dysfunction: mechanisms and detection during preclinical safety studies. Fund Clin Pharmacol 22:335–353

    Article  CAS  Google Scholar 

  • Lemasters JJ, Theruvath TP, Zhong Z, Nieminen AL (2009) Mitochondrial calcium and the permeability transition in cell death. Biochim Biophys Acta 1787:1395–1401

    Article  CAS  Google Scholar 

  • Lim YC, Desta Z, Flockhart DA, Skaar TC (2005) Endoxifen (4-hydroxy-N-desmethyl-tamoxifen) has anti-estrogenic effects in breast cancer cells with potency similar to 4-hydroxy-tamoxifen. Cancer Chemother Pharmacol 55:471–478

    Article  CAS  Google Scholar 

  • Lotan R, Neumann G, Lotan D (1980) Relationships among retinoid structure, inhibition of growth, and cellular retinoic acid-binding protein in cultured S91 melanoma cells. Cancer Res 40:1097–1102

    CAS  Google Scholar 

  • Madeira VM (1975) A rapid and ultrasensitive method to measure Ca++ movements across biological membranes. Biochem Biophys Res Commun 64:870–876

    Article  CAS  Google Scholar 

  • Monteiro P, Duarte AI, Goncalves LM, Providencia LA (2005) Valsartan improves mitochondrial function in hearts submitted to acute ischemia. Eur J Pharmacol 518:158–164

    Article  CAS  Google Scholar 

  • Moreira PI, Custodio J, Moreno A, Oliveira CR, Santos MS (2006) Tamoxifen and estradiol interact with the flavin mononucleotide site of complex I leading to mitochondrial failure. J Biol Chem 281:10143–10152

    Article  CAS  Google Scholar 

  • Niu XW, Peng ZH, Feng J, Ma HQ, Liu C, Yuan JY (2005) Mechanism of retinoid receptors in inhibiting proliferation and inducing apoptosis of human melanoma cell line A375. Chin Med J (Engl) 118:1482–1486

    CAS  Google Scholar 

  • Njar VC, Gediya L, Purushottamachar P, Chopra P, Vasaitis TS, Khandelwal A, Mehta J, Huynh C, Belosay A, Patel J (2006) Retinoic acid metabolism blocking agents (RAMBAs) for treatment of cancer and dermatological diseases. Bioorg Med Chem 14:4323–4340

    Article  CAS  Google Scholar 

  • Norris RE, Minturn JE, Brodeur GM, Maris JM, Adamson PC (2011) Preclinical evaluation of lestaurtinib (CEP-701) in combination with retinoids for neuroblastoma. Cancer Chemother Pharmacol 68:1469–1475

    Article  CAS  Google Scholar 

  • Notario B, Zamora M, Viñas O, Mampel T (2003) All-trans-retinoic acid binds to and inhibits adenine nucleotide translocase and induces mitochondrial permeability transition. Mol Pharmacol 63:224–231

    Article  CAS  Google Scholar 

  • Oliveira PJ, Wallace KB (2006) Depletion of adenine nucleotide translocator protein in heart mitochondria from doxorubicin-treated rats–relevance for mitochondrial dysfunction. Toxicology 220:160–168

    Article  CAS  Google Scholar 

  • Pebay-Peyroula E, Brandolin G (2004) Nucleotide exchange in mitochondria: Insight at a molecular level. Curr Opin Struct Biol 14:420–425

    Article  CAS  Google Scholar 

  • Pili R, Salumbides B, Zhao M, Altiok S, Qian D, Zwiebel J, Carducci MA, Rudek MA (2012) Phase I study of the histone deacetylase inhibitor entinostat in combination with 13-cis retinoic acid in patients with solid tumours. Br J Cancer 106:77–84

    Article  CAS  Google Scholar 

  • Rigobello MP, Scutari G, Friso A, Barzon E, Artusi S, Bindoli A (1999) Mitochondrial permeability transition and release of cytochrome c induced by retinoic acids. Biochem Pharmacol 58:665–670

    Article  CAS  Google Scholar 

  • Ross-Innes CS, Stark R, Holmes KA, Schmidt D, Spyrou C, Russell R, Massie CE, Vowler SL, Eldridge M, Carroll JS (2010) Cooperative interaction between retinoic acid receptor-alpha and estrogen receptor in breast cancer. Genes Dev 24:171–182

    Article  CAS  Google Scholar 

  • Rousseau C, Pettersson F, Couture MC, Paquin A, Galipeau J, Mader S, Miller WH Jr (2003) The N-terminal of the estrogen receptor (ERalpha) mediates transcriptional cross-talk with the retinoic acid receptor in human breast cancer cells. J Steroid Biochem Mol Biol 86:1–14

    Article  CAS  Google Scholar 

  • Sabichi AL, Xu H, Fischer S, Zou C, Yang X, Steele VE, Kelloff GJ, Lotan R, Clifford JL (2003) Retinoid receptor-dependent and independent biological activities of novel fenretinide analogues and metabolites. Clin Cancer Res 9:4606–4613

    CAS  Google Scholar 

  • Saez CG, Velasquez L, Montoya M, Eugenin E, Alvarez MG (2003) Increased gap junctional intercellular communication is directly related to the anti-tumor effect of all-trans-retinoic acid plus tamoxifen in a human mammary cancer cell line. J Cell Biochem 89:450–461

    Article  CAS  Google Scholar 

  • Sardana K, Garg VK (2011) Low-dose isotretinoin in acne vulgaris: A critical review. Br J Dermatol 165:698–700

    Article  CAS  Google Scholar 

  • Sauvez F, Drouin DS, Attia M, Bertheux H, Forster R (1999) Cutaneously applied 4-hydroxytamoxifen is not carcinogenic in female rats. Carcinogenesis 20:843–850

    Article  CAS  Google Scholar 

  • Searovic P, Alonso M, Oses C, Pereira-Flores K, Velarde V, Saez CG (2009) Effect of tamoxifen and retinoic acid on bradykinin induced proliferation in MCF-7 cells. J Cell Biochem 106:473–481

    Article  CAS  Google Scholar 

  • Simeone AM, Tari AM (2004) How retinoids regulate breast cancer cell proliferation and apoptosis. Cell Mol Life Sci 61:1475–1484

    Article  CAS  Google Scholar 

  • Starkov AA (2010) The molecular identity of the mitochondrial Ca2+ sequestration system. FEBS J 277:3652–3663

    Article  CAS  Google Scholar 

  • Stocchi V, Cucchiarini L, Magnani M, Chiarantini L, Palma P, Crescentini G (1985) Simultaneous extraction and reverse-phase high-performance liquid chromatographic determination of adenine and pyridine nucleotides in human red blood cells. Anal Biochem 146:118–124

    Article  CAS  Google Scholar 

  • Toma S, Isnardi L, Raffo P, Dastoli G, De Francisci E, Riccardi L, Palumbo R, Bollag W (1997) Effects of all-trans-retinoic acid and 13-cis-retinoic acid on breast-cancer cell lines: growth inhibition and apoptosis induction. Int J Cancer 70:619–627

    Article  CAS  Google Scholar 

  • Veal G, Rowbotham S, Boddy A (2007) Pharmacokinetics and pharmacogenetics of 13-cis-retinoic acid in the treatment of neuroblastoma. Therapie 62:91–93

    Article  Google Scholar 

  • Vignais PV (1976) Molecular and physiological aspects of adenine nucleotide transport in mitochondria. Biochim Biophys Acta 456:1–38

    Article  CAS  Google Scholar 

  • Vuletic A, Konjevic G, Milanovic D, Ruzdijic S, Jurisic V (2010) Antiproliferative effect of 13-cis-retinoic acid is associated with granulocyte differentiation and decrease in cyclin B1 and Bcl-2 protein levels in G0/G1 arrested HL-60 cells. Pathol Oncol Res 16:393–401

    Article  CAS  Google Scholar 

  • Wallace KB (2008) Mitochondrial off targets of drug therapy. Trends Pharmacol Sci 29:361–366

    Article  CAS  Google Scholar 

  • Wang Y, He QY, Chen H, Chiu JF (2007) Synergistic effects of retinoic acid and tamoxifen on human breast cancer cells: proteomic characterization. Exp Cell Res 313:357–368

    Article  CAS  Google Scholar 

  • Wong ZW, Ellis MJ (2004) First-line endocrine treatment of breast cancer: aromatase inhibitor or antioestrogen? Br J Cancer 90:20–25

    Article  CAS  Google Scholar 

  • Zhou S, Starkov A, Froberg MK, Leino RL, Wallace KB (2001) Cumulative and irreversible cardiac mitochondrial dysfunction induced by doxorubicin. Cancer Res 61:771–777

    CAS  Google Scholar 

  • Zorov DB, Juhaszova M, Yaniv Y, Nuss HB, Wang S, Sollott SJ (2009) Regulation and pharmacology of the mitochondrial permeability transition pore. Cardiovasc Res 83:213–225

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José B. A. Custódio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, F.S.G., Ribeiro, M.P.C., Santos, M.S. et al. The antiestrogen 4-hydroxytamoxifen protects against isotretinoin-induced permeability transition and bioenergetic dysfunction of liver mitochondria: comparison with tamoxifen. J Bioenerg Biomembr 45, 383–396 (2013). https://doi.org/10.1007/s10863-013-9517-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-013-9517-9

Keywords

Navigation